首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zoige wetland of Tibetan plateau is a model low temperature ecosystem in a low latitude (33°56′N, 102°52′E) and high altitude region. Its organism has a unique phylogeny. To better evaluate the resource of the non-thermophilic Crenarchaeota in such an ecosystem, both restriction fragment length polymorphism (RFLP) and clone techniques were employed to study the diversity and phylogenetics of the non-thermophilic Crenarchaeota in the wetland soil. Archaeal 16S rRNA genes were amplified with the archaea-specific primers, and a library consisting of 240 clones was established. The non-thermophilic Crenarchaeota phylogenetic tree was constructed using the ARB phylogenetic analysis software. Based on the results of the RFLP experiments, the clones of all three Zoige wetland swamp soil samples were grouped into 16 different restriction cleavage patterns, all the clone coverage indices were above 91%, showing high library coverage. The correlations analysis indicated that the biodiversity of the non-thermophilic Crenarchaeota be positively correlated with soil moisture. The phylogenetic analysis revealed that all of the 16 Crenarchaeota sequences were clustered into two groups: 13 sequences in the Group 1.1b and 3 in the Group 1.3, similar to those archaeal sequences obtained from grassland soil, freshwater reservoirs, and seawater above boreholes, and radioactive groundwater and hot springs.  相似文献   

2.
3.
Prokaryotic diversity in Zostera noltii-colonized marine sediments   总被引:2,自引:0,他引:2  
The diversity of microorganisms present in a sediment colonized by the phanerogam Zostera noltii has been analyzed. Microbial DNA was extracted and used for constructing two 16S rDNA clone libraries for Bacteria and Archaea. Bacterial diversity was very high in these samples, since 57 different sequences were found among the 60 clones analyzed. Eight major lineages of the Domain Bacteria were represented in the library. The most frequently retrieved bacterial group (36% of the clones) was delta-Proteobacteria related to sulfate-reducing bacteria. The second most abundant group (27%) was gamma-Proteobacteria, including five clones closely related to S-oxidizing endosymbionts. The archaeal clone library included members of Crenarchaeota and Euryarchaeota, with nine different sequences among the 15 analyzed clones, indicating less diversity when compared to the Bacteria organisms. None of these sequences was closely related to cultured Archaea organisms.  相似文献   

4.
南海南部陆坡表层沉积物细菌和古菌多样性   总被引:13,自引:0,他引:13  
李涛  王鹏  汪品先 《微生物学报》2008,48(3):323-329
从南海南部陆坡表层沉积物中扩增了细菌和古菌16S rDNA序列,并对克隆子文库进行系统发育分析.细菌序列以变形杆菌(Proteobacteria)居多,其次是浮霉菌(Planctomycete)、酸杆菌(Acidobacteria)和candidate division OP10,另外还有少量铁还原杆菌(Deferrobacteres)、candidate division OP3、OP11、OP8、TM6、疣微菌(Verrucomicrobia)和螺旋体(Spirochaetes).古菌序列分别来自泉古生菌(Crenarchaeota)和广古生菌(Euryarchaeota),以Marine Benthic Group B(MBGB)、MarineCrenarchaeotic Group Ⅰ(MGⅠ)、Marine Benthic Group D(MBGD)和South African Gold Mine Euryarchaeotic Group(SAGMEG)为主.少量序列为C3、甲烷杆菌(Methanobacteriales)和Novel Euryarchaeotic Group(NEG).结果表明海底表层沉积物中有丰富多样的微生物群落.  相似文献   

5.
Archaeal communities in many acidic forest soil systems are dominated by a distinct crenarchaeal lineage Group 1.1c. In addition, they are found consistently in other acidic soils including grassland pasture, moorland and alpine soils. To determine whether soil pH is a major factor in determining their presence and abundance, Group 1.1c community size and composition were investigated across a pH gradient from 4.5 to 7.5 that has been maintained for > 40 years. The abundances of Group 1.1c Crenarchaeota, total Crenarchaeota and total bacteria were assessed by quantitative PCR (qPCR) targeting 16S rRNA genes and the diversity of Group 1.1c crenarchaeal community was investigated by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. The abundance of Group 1.1c Crenarchaeota declined as the pH increased, whereas total Crenarchaeota and Bacteria showed no clear trend. Community diversity of Group 1.1c Crenarchaeota was also influenced with different DGGE bands dominating at different pH. Group 1.1c Crenarchaeota were also quantified in 13 other soils representing a range of habitats, soil types and pH. These results exhibited the same trend as that shown across the pH gradient with Group 1.1c Crenarchaeota representing a greater proportion of total Crenarchaeota in the most acidic soils.  相似文献   

6.
西藏米拉山土壤古菌16S rRNA及amoA基因多样性?分析   总被引:2,自引:0,他引:2  
摘要:【目的】硝化作用在全球土壤氮循环中具有重要的作用,虽然细菌一度被认为单独负责催化这个过程的限速步骤,但是最近一些研究结果表明泉古菌具有氨氧化的能力。本文通过构建古菌16S rRNA 基因克隆文库和氨氧化古菌amoA基因文库,分析西藏米拉山高寒草甸土壤中古菌及氨氧化古菌群落结构组成情况,为揭示青藏高原高寒草甸土壤古菌的多样性提供理论基础。【方法】采用未培养技术直接从土壤中提取微生物总DNA,分别利用通用引物构建古菌16S rRNA 基因和氨氧化古菌amoA基因克隆文库。【结果】通过构建系统发育树,表明古菌16S rRNA 基因克隆文库包括泉古菌门和未分类的古菌两大类,并且所有泉古菌均属于热变形菌纲。氨氧化古菌amoA基因克隆文库中序列均为泉古菌。通过DOTUR软件分析,古菌16S rRNA基因和古菌amoA基因克隆文库分别包括64个OTUs和 75个OTUs。【结论】西藏米拉山高寒草甸土壤中古菌多样性比较丰富,表明古菌在高寒草甸土壤的氮循环中可能具有重要的作用。所获得的一些序列与已知环境中土壤、淡水及海洋沉积物中获得的一些序列具有很高的相似性,其古菌及氨氧化古菌来自不同环境的可能性比较大,可能与青藏高原的地质历史变迁过程有关。米拉山古菌及氨氧化古菌与陆地设施土壤中相似性最高,说明与西藏米拉山高寒草甸土壤的退化有关。  相似文献   

7.
The abundance and structure of archaeal and bacterial communities from the active layer and the associated permafrost of a moderately acidic (pH < 5.0) High Arctic wetland (Axel Heiberg Island, Nunavut, Canada) were investigated using culture- and molecular-based methods. Aerobic viable cell counts from the active layer were ~100-fold greater than those from the permafrost (2.5 × 10(5) CFU·(g soil dry mass)(-1)); however, a greater diversity of isolates were cultured from permafrost, as determined by 16S rRNA gene sequencing. Isolates from both layers demonstrated growth characteristics of a psychrotolerant, halotolerant, and acidotolerant community. Archaea constituted 0.1% of the total 16S rRNA gene copy number and, in the 16S rRNA gene clone library, predominantly (71% and 95%) consisted of Crenarchaeota related to Group I. 1b. In contrast, bacterial communities were diverse (Shannon's diversity index, H = ~4), with Acidobacteria constituting the largest division of active layer clones (30%) and Actinobacteria most abundant in permafrost (28%). Direct comparisons of 16S rRNA gene sequence data highlighted significant differences between the bacterial communities of each layer, with the greatest differences occurring within Actinobacteria. Comparisons of 16S rRNA gene sequences with those from other Arctic permafrost and cold-temperature wetlands revealed commonly occurring taxa within the phyla Chloroflexi, Acidobacteria, and Actinobacteria (families Intrasporangiaceae and Rubrobacteraceae).  相似文献   

8.
The spatial and temporal variability of bacterial communities were determined for the nearshore waters of Lake Michigan, an oligotrophic freshwater inland sea. A freshwater estuary and nearshore sites were compared six times during 2006 using denaturing gradient gel electrophoresis (DGGE). Bacterial composition clustered by individual site and date rather than by depth. Seven 16S rRNA gene clone libraries were constructed, yielding 2717 bacterial sequences. Spatial variability was detected among the DGGE banding patterns and supported by clone library composition. The clone libraries from deep waters and the estuary environment revealed highest overall bacterial diversity. Betaproteobacteria sequence types were the most dominant taxa, comprising 40.2–67.7% of the clone libraries. BAL 47 was the most abundant freshwater cluster of Betaproteobacteria , indicating widespread distribution of this cluster in the nearshore waters of Lake Michigan. Incertae sedis 5 and Oxalobacteraceae sequence types were prevalent in each clone library, displaying more diversity than previously described in other freshwater environments. Among the Oxalobacteraceae sequences, a globally distributed freshwater cluster was determined. The nearshore waters of Lake Michigan are a dynamic environment that experience forces similar to the coastal ocean environment and share common bacterial diversity with other freshwater habitats.  相似文献   

9.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

10.
Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture.  相似文献   

11.
新疆红井子盐碱土壤非培养放线菌多样性   总被引:1,自引:0,他引:1  
【目的】研究新疆红井子盐碱土壤中的放线菌物种多样性。【方法】应用基于16S rRNA基因序列系统发育分析的免培养方法进行放线菌物种多样性分析。利用放线菌特异性引物,以土壤样品总DNA为模板,扩增16S rRNA基因,构建16S rRNA基因克隆文库,并对文库中的插入序列进行RFLP分析。【结果】随机挑选的246个阳性克隆通过酶切筛选出61个不同图谱的重组克隆并测序。分析结果显示这61个克隆序列分属于42个OTUs,分布于放线菌纲(Actinobacteria)的放线菌亚纲(Actinobacteridae)、酸微菌亚纲(Acidimicrobidae)和红色杆菌亚纲(Rubrobacteridae);该环境中有71.4%的序列与已有效发表菌株的序列相似性小于97%,代表着放线菌新类群,其中部分序列形成了几个独立的进化分支,可能代表更高级的新分类单元。【结论】红井子土壤中的放线菌组成具有丰富的多样性,并有新放线菌分类单位的潜在资源,值得进一步进行开发研究。  相似文献   

12.
The phylogeny of endolithic microbes associated with marine basalts   总被引:1,自引:0,他引:1  
We examined the phylogenetic diversity of microbial communities associated with marine basalts, using over 300 publicly available 16S rDNA sequences and new sequence data from basalt enrichment cultures. Phylogenetic analysis provided support for 11 monophyletic clades originating from ocean crust (sediment, basalt and gabbro). Seven of the ocean crust clades (OCC) are bacterial, while the remaining four OCC are in the Marine Group I (MGI) Crenarchaeota. Most of the OCC were found at diverse geographic sites, suggesting that these microorganisms have cosmopolitan distributions. One OCC in the Crenarchaeota consisted of sequences derived entirely from basalts. The remaining OCC were found in both basalts and sediments. The MGI Crenarchaeota were observed in all studies where archaeal diversity was evaluated. These results demonstrate that basalts are occupied by cosmopolitan clades of microorganisms that are also found in marine sediments but are distinct from microorganisms found in other marine habitats, and that one OCC in the ubiquitous MGI Crenarchaeota clade may be an ecotype specifically adapted to basalt.  相似文献   

13.
Nine types of nitrogen-fixing bacterial strains were isolated from 3 rhizosphere soil samples taken from mangrove plants in the Dongzhaigang National Mangrove Nature Reserve of China. Most isolates belonged to Gammaproteobacteria Pseudomonas, showing that these environments constituted favorable niches for such abundant nitrogen-fixing bacteria. New members of the diazotrophs were also found. Using a soil DNA extraction and PCR-cloning-sequencing approach, 135 clones were analyzed by restriction fragment length polymorphism (RFLP) analysis, and 27 unique nifH sequence phylotypes were identified, most of which were closely related to sequences from uncultured bacteria. The diversity of nitrogen-fixing bacteria was assessed by constructing nifH phylogenetic trees from sequences of all isolates and clones in this work, together with related nifH sequences from other mangrove ecosystems in GenBank. The nifH diversity varied among soil samples, with distinct biogeochemical properties within a mangrove ecosystem. When comparing different mangrove ecosystems, the nifH gene sequences from a specific site tended to cluster as individual groups. The results provided interesting data and novel information on our understanding of diazotroph community diversity in the mangrove ecosystems.  相似文献   

14.
Investigations of the distribution and diversity of nitrogen-fixing microorganisms in natural environments have often relied on PCR amplification and sequence analysis of a portion of one of the key enzymes in nitrogen fixation, dinitrogenase reductase, encoded by nifH. Recent work has suggested that DNA macroarrays provide semiquantitative fingerprints of diversity within mixtures of nifH amplicons (G. F. Steward, B. D. Jenkins, B. B. Ward, and J. P. Zehr, Appl. Environ. Microbiol. 70:1455-1465, 2004). Here we report the application of macroarrays for a study in the Chesapeake Bay. Samples from different locations in the bay yielded distinct fingerprints. Analysis of replicates and samples from different locations by cluster analysis showed that replicates clustered together, whereas different samples formed distinct clusters. There was a correspondence between the hybridization pattern observed and that predicted from the distribution of sequence types in a corresponding clone library. Some discrepancies between the methods were observed which are likely a result of the high nifH sequence diversity in the Chesapeake Bay and the limited number of sequences represented on this version of the array. Analyses of sequences in the clone library indicate that the Chesapeake Bay harbors unique, phylogenetically diverse diazotrophs. The macroarray hybridization patterns suggest that there are spatially variable communities of diazotrophs, which have been confirmed by quantitative PCR methods (S. M. Short, B. D. Jenkins, and J. P. Zehr, Appl. Environ. Microbiol., in press). The results show that DNA macroarrays have great potential for mapping the spatial and temporal variability of functional gene diversity in the environment.  相似文献   

15.
云南热带户用沼气池的原核生物群落结构研究   总被引:2,自引:0,他引:2  
【目的】揭示云南热带农村户用沼气池中的原核生物(细菌和古菌)的群落结构特征。【方法】采用16S r RNA基因克隆文库技术对云南(北)热带代表性气候区的户用沼气池中的原核生物(细菌和古菌)多样性进行研究。【结果】得到细菌330条有效序列,划分为108个OTUs,文库覆盖度为81.5%;古菌有效序列185条,划分为17个OTUs,文库覆盖度为97.8%。通过Gen Bank数据库进行相似性比对与系统发育分析,结果表明:大部分细菌为未知细菌(Unclassified bacteria,占24.19%),优势细菌类群归属拟杆菌门(Bacteroidetes,占23.58%)、绿弯菌门(Chloroflexi,占21.46%)、厚壁菌门(Firmicutes,占13.91%)和变形菌门(Proteobacteria,占8.74%);古菌主要的优势类群为乙酸盐营养型的甲烷八叠球菌目(Methanosarcinales)的鬃毛甲烷菌属(Methanosaeta,占76.75%);此外还检测到少量未培养的泉古菌门细菌(Crenarchaeota,占9.19%)。【结论】云南(北)热带代表性气候区的农村户用沼气池中的微生物种类十分丰富,不同微生物种类的丰度存在明显差异,并存在明显优势种群,且细菌比古菌具有更丰富的多样性。  相似文献   

16.
We surveyed the archaeal assemblage in a stratified sulfurous lake (Lake Vilar, Banyoles, Spain) over 5 consecutive years to detect potential seasonal and interannual trends in the free-living planktonic Archaea composition. The combination of different primer pairs and nested PCR steps revealed an unexpectedly rich archaeal community. Overall, 140 samples were analyzed, yielding 169 different 16S rRNA gene sequences spread over 14 Crenarchaeota (109 sequences) and six Euryarchaeota phylogenetic clusters. Most of the Crenarchaeota (98% of the total crenarchaeotal sequences) affiliated within the Miscellaneous Crenarchaeota Group (MCG) and were related to both marine and freshwater phylotypes. Euryarchaeota mainly grouped within the Deep Hydrothermal Vent Euryarchaeota (DHVE) cluster (80% of the euryarchaeotal sequences) and the remaining 20% distributed into three less abundant taxa, most of them composed of soil and sediment clones. The largest fraction of phylotypes from the two archaeal kingdoms (79% of the Crenarchaeota and 54% of the Euryarchaeota) was retrieved from the anoxic hypolimnion, indicating that these cold and sulfide-rich waters constitute an unexplored source of archaeal richness. The taxon rank-frequency distribution showed two abundant taxa (MCG and DHVE) that persisted in the water column through seasons, plus several rare ones that were only detected occasionally. Differences in richness distribution and seasonality were observed, but no clear correlations were obtained when multivariate statistical analyses were carried out.  相似文献   

17.
Li T  Wang P  Wang P X 《农业工程》2008,28(3):1166-1173
Microbial communities were obtained from the surface sediments of the Xisha Trough using the culture-independent technique. The characteristics of the 16S rDNA gene amplified from the sediments indicated that archaeal clones could be grouped into Euryarchaeota and Crenarchaeota, respectively. Two archaeal groups, Marine Crenarchaeotic GroupI and Terrestrial Miscellaneous Euryarchaeotal Group, were the most dominant archaeal 16S rDNA gene components in the sediments. The remaining components were related to the members of Marine Benthic Group B, Marine Benthic Group A, Marine Benthic Group D, Novel Euryarchaeotic Group and C3. The bacterial clones exhibited greater diversity than the archaeal clones with the 16S rDNA gene sequences from the members of Proteobacteria, Planctomycetes, Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, candidate division OP8, Bacterioidetes/Chlorobi and Verrucomicrobia. Most of these lineages represented uncultured microorganisms. The result suggests that a vast amount of microbial resource in the surface sediments of the South China Sea has not been known.  相似文献   

18.
Tramway Ridge, located near the summit of Mount Erebus in Antarctica, is probably the most remote geothermal soil habitat on Earth. Steam fumaroles maintain moist, hot soil environments creating extreme local physicochemical differentials. In this study a culture-independent approach combining automated rRNA intergenic spacer analysis (ARISA) and a 16S rRNA gene library was used to characterize soil microbial (Bacterial and Archaeal) diversity along intense physicochemical gradients. Statistical analysis of ARISA data showed a clear delineation between bacterial community structure at sites close to fumaroles and all other sites. Temperature and pH were identified as the primary drivers of this demarcation. A clone library constructed from a high-temperature site led to the identification of 18 novel bacterial operational taxonomic units (OTUs). All 16S rRNA gene sequences were deep branching and distantly (85–93%) related to other environmental clones. Five of the signatures branched with an unknown group between candidate division OP10 and Chloroflexi . Within this clade, sequence similarity was low, suggesting it contains several yet-to-be described bacterial groups. Five archaeal OTUs were obtained and exhibited high levels of sequence similarity (95–97%) with Crenarchaeota sourced from deep-subsurface environments on two distant continents. The novel bacterial assemblage coupled with the unique archaeal affinities reinvigorates the hypotheses that Tramway Ridge organisms are relics of archaic microbial lineages specifically adapted to survive in this harsh environment and that this site may provide a portal to the deep-subsurface biosphere.  相似文献   

19.
The genetic diversity of a soil microbial community was assessed by analysis of clonedhsp70 sequences. A clone library was generated by polymerase chain reaction-mediated amplification of a 650-base pair fragment of thehsp70 gene, using DNA extracted from soil, without culturing the microorganisms. Fifty-five random clones were sequenced and their amino acid sequences deduced. Analysis of the amino acid sequence of the clones revealed the presence of signature sequences in common with known prokaryotic and lower eukaryotic HSP70 homologs. None of the 55 analyzed sequences were identical to each other or to a published sequence. These results confirm the presence of considerable genetic diversity within soil microbial communities, the major proportion of which remains uncharacterized.  相似文献   

20.
Aim: To understand soil benzene monooxygenase gene diversity by clone library construction and microarray profiling. Methods and Results: A primer set was designed, and benzene monooxygenase gene diversity was characterized in two benzene‐amended soils. The dominant sequence types in the clone libraries were distinct between the two soils, and both sequences were assigned to novel clusters. Monooxygenase gene richness and diversity increased after benzene degradation. Oligonucleotide probes for microarray analysis were designed to detect a number of sequenced clones and reported monooxygenase genes. The microarray detected several genes that were not detected in the clone libraries of the same samples. Six probes were detected in more than one soil. Conclusions: The primer set designed in this study successfully detected diverse benzene monooxygenase genes. The level of diversity may have increased because the degradation of benzene differed from soil to soil. Microarrays have great potential in the comprehensive detection of gene richness as well as the elucidation of key genes for degradation. Significance and Impact of the Study: This study introduces a new primer set that may be used to identify diverse benzene monooxygenase genes in the environment; moreover, it demonstrates the potential of microarray technology in the profiling of environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号