首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selective assay of olanzapine with liquid chromatography atmospheric pressure chemical ionization (LC–APCI–MS, positive ions) is described. The drug and internal standard (ethyl derivative of olanzapine) were isolated from serum using a solid-phase extraction procedure (C18 cartridges). The separation was performed on ODS column in acetonitrile–50 mM ammonium formate buffer, pH 3.0 (25:75). After analysis of mass spectra taken in full scan mode, a selected-ion monitoring detection (SIM) was applied with the following ions: m/z 313 and 256 for olanzapine and m/z 327 and 270 for the internal standard for quantitation. The limit of quantitation was 1 μg/l, the absolute recovery was above 80% at concentration level of 10 to 100 μg/l. The method tested linear in the range from 1 to 1000 μg/l and was applied for therapeutic monitoring of olanzapine in the serum of patients receiving (Zyprexa™) and in one case of olanzapine overdose. Olanzapine in frozen serum samples and in frozen extracts was stable over at least four weeks. The examinations of urine extracts from patients receiving olanzapine revealed peaks of postulated metabolites (glucuronide and N-desmethylolanzapine).  相似文献   

2.
We developed a new method for the rapid determination of urinary organic acids using liquid chromatography—atmospheric pressure chemical ionization mass spectrometry. Mass spectra of authentic organic acids obtained in the negative-ion mode showed intense [M − H] ions with some fragment ions. Urine samples of patients with methylmalonic aciduria, ornithine transcarbamylase deficiency, and phenylketonuria were extracted using anion-exchange columns. The mass chromatograms of the extracts showed some dominant peaks of abnormal metabolites characteristic of each disorder. This is a useful method for the analysis of urinary organic acids for the diagnosis of organic aciduria, because the sample preparation is simple.  相似文献   

3.
A highly sensitive and selective liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry assay was developed and validated for simultaneous determination of epimeric budesonide (BUD) and fluticasone propionate (FP) in plasma. The drugs were isolated from human plasma using C18 solid-phase extraction cartridges, and epimeric BUD was acetylated with a mixture of 12.5% acetic anhydride and 12.5% triethylamine in acetonitrile to form the 21-acetyl derivatives following the solid-phase extraction. Deuterium-labelled BUD acetate with an isotopic purity >99% was synthesized and used as the internal standard. The assay was linear over the ranges 0.05–10.0 ng/ml for epimeric BUD, and 0.02–4.0 ng/ml for FP. The inter- and intra-day relative standard deviations were <14.3% in the assay concentration range.  相似文献   

4.
High-performance liquid chromatography coupled to atmospheric pressure ionization–electrospray ionization mass spectrometry (API–ESI–MS) was investigated for the analysis of corticosterone metabolites; their characterization was obtained by combining the separation on Zorbax Eclipse XDB C18 column (eluted with a methanol–water–acetic acid gradient) with identification using positive ion mode API–ESI–MS and selected ion analysis. The applicability of this method was verified by monitoring the activity of steroid converting enzymes (20β-hydroxysteroid dehydrogenase and 11β-hydroxysteroid dehydrogenase) in avian intestines.  相似文献   

5.
The present study describes a confirmatory method for the quantitative determination in hair of the most common corticosteroids illegaly used as doping agents by athletes. Corticosteroids are extracted from 50 mg of powdered hairs by methanolic extraction follows by a solid-phase extraction on C18 cartridge. After extraction, the dried residue is reconstituted with 50 μl acetonitrile and injected in a liquid chromatograph. Liquid chromatography separation is performed on a reversed-phase C18 column with a binary gradient of formiate buffer pH 3-acetonitrile as mobile phase. Detection is performed with an electrospray ionization mass spectrometer in negative ion and selected-ion monitoring mode. The limits of sensitivity achieved is 0.1 ng/mg in hair. Application to hair sample collected during an antidoping control and comparison to results obtain on urines, collected on the same athletes at the same time, shows the interest and the complementarity of both matrices. Hair analysis could allow the detection of corticosteroids on a large period preceding the control, and the detection of natural corticosteroids administered as pro-drug, like hydrocortisone acetate.  相似文献   

6.
A method for the quantification of clindamycin in human serum and in human bone tissue samples applying high-performance liquid chromatography with atmospheric pressure chemical ionization–mass spectrometry (APCI–MS) is presented. Lincomycin is used as the internal standard. Serum samples are prepared only by protein precipitation with acetonitrile. Bone tissue samples have to be crushed and homogenized in extraction buffer prior to analysis. The chromatographic separation is achieved on an RP-18 stationary phase with 0.02% trifluoroacetic acid in water 60%/acetonitrile 40% v/v as mobile phase. The limits of quantification are 0.1 μg/ml for serum samples and 0.1 μg/g for bone tissue samples. The coefficients of variation for the assays are 4.48 and 8.41% at the limit of quantification for serum and bone tissue samples, respectively. Bone tissue samples as small as 50 mg can be used.  相似文献   

7.
An HPLC–MS–MS method for the quantitative analysis of flunitrazepam in human serum was established. The method features a very simple liquid–liquid extraction, the use of a standard 4-mm HPLC column, isocratic elution using a buffer-free solvent, short retention times in connection with good peak resolution and the sensitivity and selectivity of an ion trap MS–MS detector. The procedure enables unambiguous identification of analytes by their product ion spectra, as well as sensitive quantitation (limit of quantitation for flunitrazepam=0.5 ng/ml). This feature was used for the confirmation of HPLC–UV results for nitrazepam.  相似文献   

8.
Bakhtiar R  Ramos L  Tse FL 《Chirality》2001,13(2):63-74
Recent advances in mass spectrometry have rendered it an attractive and versatile tool in industrial and academic research laboratories. As a part of this rapid growth, a considerable body of literature has been devoted to the application of mass spectrometry in studies involving enantioselectivity, molecular recognition, and supramolecular chemistry. In concert with separation techniques such as capillary electrophoresis and liquid chromatography, mass spectrometry allows rapid characterization of a large array of molecules in complex mixtures. A majority of these findings have been made possible by the introduction of 'soft-ionization' techniques such as electrospray ionization interface. Other techniques such as atmospheric pressure chemical ionization mass spectrometry have been widely used as a rugged interface for quantitative liquid chromatography-mass spectrometry. Herein, we present a brief overview of the above techniques accompanied with several examples of enantioselective capillary electrophoresis- and liquid chromatography-mass spectrometry in drug discovery and development. Although the emphasis of this article is on quantitative enantiomeric chromatography-mass spectrometry, we envisage that similar strategies are adaptable in qualitative studies.  相似文献   

9.
An HPLC-PAD-API/MS method for analysing the chemical constituents of Angelica sinensis (A. sinensis) has been developed. ESI and APCI spectra, in both positive ion (PI) and negative ion (NI) modes, provided very useful information concerning the molecular weights of detected compounds. By comparing the retention times, UV spectra, mass spectra and molecular weights of detected compounds with those published in literature, 15 constituents of A. sinensis could be tentatively identified. This technique involving combined MS information may provide an objective, reliable and rapid analytical method for the quality control and database research of traditional Chinese medicines.  相似文献   

10.
A selected-ion monitoring (SIM) determination of serum lycopene, α-carotene and β-carotene by an atmospheric pressure chemical ionization mass spectrometry (APCI–MS) was developed. A large amount of serum cholesterols disturbed the SIM determination of carotenoids by contaminating the segment of interface with the LC–MS. Therefore, separation of carotenoids from the cholesterols was performed using a mixed solution of methanol and acetonitrile (70:30) as the mobile phase on a C18 column of mightsil ODS-5 (75 mm×4.6 mm I.D.). The SIM determination was carried out by introducing only the peak portions of carotenoids and I.S. (squalene) by means of an auto switching valve. In the positive mode of APCI–MS, lycopene, α-carotene and β-carotene were monitored at m/z 537 and I.S. was monitored at m/z 411. This method was linear for all analytes in the range of 15–150 ng for lycopene, 7–70 ng for α-carotene and 25–50 ng for β-carotene. The detection limit of LC–APCI–MS-SIM for carotenoids was about 3 ng per 1 ml of serum (S/N=3). The repeatabilities, expressed as C.V.s, were 10%, 8.4% and 5.3% for lycopene, α-carotene and β-carotene, respectively. The intermediate precisions, expressed as C.V.s, were 11. 2%, 8.8% and 6.5% for lycopene, α-carotene and β-carotene, respectively.  相似文献   

11.
A selective assay of flunitrazepam (F) and its metabolites 7-aminoflunitrazepam (7-AF), N-desmethylflunitrazepam (N-DF) and 3-hydroxyflunitrazepam (3-OHF) with liquid chromatography–atmospheric pressure chemical ionization mass spectrometry (LC–APCI-MS, positive ions) is described. The drugs were isolated from serum, blood or urine using a solid-phase extraction procedure previously applied to various drugs of abuse. F-d3 and 7-AF-d3 were used as internal standards. The drugs were separated on ODS column in acetonitrile–50 mM ammonium formate buffer, pH 3.0 (45:55, v/v). After analysis of mass spectra taken in full scan mode, a selected-ion monitoring detection was applied with following ions: m/z 284 (7-AF and F), 287 (7-AF-d3 and F-d3), 314 (F), 300 (N-DF and 3-OHF), 317 (F-d3), 330 (3-OHF). The limits of detection were: 0.2 μg/l for F and 7-AF, 1 μg/l for N-DF and 3-OHF. The method was linear in the range 1–500 μg/l, the recoveries ranged from 92 to 99%. The method was applied for determination of F and metabolites in clinical and forensic samples. LC–APCI-MS seems to be a method of choice for these compounds.  相似文献   

12.
The technique of automated in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–electrospray ionization mass spectrometry (LC–ESI-MS) was evaluated for the determination of ranitidine. In-tube SPME is an extraction technique for organic compounds in aqueous samples, in which analytes are extracted from the sample directly into an open tubular capillary column by repeated aspirate/dispense steps. In order to optimize the extraction of ranitidine, several in-tube SPME parameters such as capillary column stationary phase, extraction pH and number and volume of aspirate/dispense steps were investigated. The optimum extraction conditions for ranitidine from aqueous samples were 10 aspirate/dispense steps of 30 μl of sample in 25 mM Tris–HCl (pH 8.5) with an Omegawax 250 capillary column (60 cm×0.25 mm I.D., 0.25 μm film thickness). The ranitidine extracted on the capillary column was easily desorbed with methanol, and then transported to the Supelcosil LC-CN column with the mobile phase methanol–2-propanol–5 M ammonium acetate (50:50:1). The ranitidine eluted from the column was determined by ESI-MS in selected ion monitoring mode. In-tube SPME followed by LC–ESI-MS was performed automatically using the HP 1100 autosampler. Each analysis required 16 min, and carryover of ranitidine in this system was below 1%. The calibration curve of ranitidine in the range of 5–1000 ng/ml was linear with a correlation coefficient of 0.9997 (n=24), and a detection limit at a signal-to-noise ratio of three was ca. 1.4 ng/ml. The within-day and between-day variations in ranitidine analysis were 2.5 and 6.2% (n=5), respectively. This method was also applied for the analyses of tablet and urine samples.  相似文献   

13.
A method has been developed for the rapid determination of sugars, including molecular weight measurements, using high-performance liquid chromatography coupled with negative-ion, atmospheric-pressure chemical-ionization mass spectrometry. The chromatography was carried out on a 250 × 4 mm I.D. column packed with 7 μm NH2-silica. The mobile phase consisted of a high percentage of methanol or acetonitrile with a small amount of chloroform. During the mass spectrometry, a strong base is formed from the polar solvent molecules by corona discharge, followed by ion—molecule reactions in the chemical ionization ion source (e.g. the methoxy anion is formed from methanol). This strong base reacts with the chloroform, generating chloride ions, which in turn react with the neutral sugar molecules as they elute from the chromatograph. The chloride ion and sugar interactions yield chloride-attachment ions, which are further stabilized by successive collisions. In this method, authentic monosaccharides and some oligosaccharides show dominant quasi-molecular ions, [M + Cl], with little fragmentation, and it is particularly useful for the molecular weight determination of sugars.  相似文献   

14.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometric method is described for the determination of tamsulosin in dog plasma. Tamsulosin was extracted from plasma using a mixture of hexane-ethyl acetate (2:1, v/v) and separated on a C18 column interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase consisting of a mixture of methanol, water and formic acid (80:20:1, v/v/v) was delivered at a flow rate of 0.5 ml/min. Atmospheric pressure chemical ionization (APCI) source was operated in positive ion mode. Selected reaction monitoring (SRM) mode using the transitions of m/z 409-->m/z 228 and m/z 256-->m/z 166.9 were used to quantify tamsulosin and the internal standard, respectively. The linearity was obtained over the concentration range of 0.1-50.0 ng/ml for tamsulosin and the lower limit of quantitation was 0.1 ng/ml. For each level of QC samples, inter- and intra-run precision was less than 5.0 and 4.0% (relative standard deviation (R.S.D.)), respectively, and accuracy was within +/-0.3% (relative error (R.E.)). This method was successfully applied to pharmacokinetic study of a tamsulosin formulation product after oral administration to beagle dogs.  相似文献   

15.
16.
A sensitive and accurate normal-phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) method for determining the standard ceramide [NS] (Cer[NS]) was developed and validated so as to improve the traditional thin-layer chromatography (TLC) technique and LC-electrospray ionization (ESI)-MS method to profile and quantify ceramides in nude mouse skin. Normal-phase LC-APCI-MS was optimized to separate the nine classes of ceramides presented in the stratum corneum (SC) of nude mouse skin. A normal-phase silica column eluted with the gradient system from heptane:acetone/butanol (90:10, v/v) of 75:25 to 100% acetone/butanol (90:10, v/v) (with each solvent containing 0.1% [v/v] triethylamine and 0.1% [v/v] formic acid) at a flow rate of 0.8 ml/min was found to be optimal for analyzing standard Cer[NS]. The analysis of Cer[NS] was validated and employed as the standard for constructing a calibration curve to quantitate all classes of ceramides. This method was applied to profile the classes and contents of ceramides in the SC of nude mouse skin and proved to be workable. It was concluded that this improved method can be used to directly detect and quantify all classes of ceramides in the SC of nude mouse skin and that it is more convenient and labor-saving than the traditional TLC method.  相似文献   

17.
An analytical method to identify and determine benzphetamine (BMA) and its five metabolites in urine was developed by liquid chromatography–electrospray ionization mass spectrometry (LC–ESI–MS) using the solid-phase extraction column Bond Elut SCX. Deuterium-labeled compounds, used as internal standards, were separated chromatographically from each corresponding unlabeled compound in the alkaline mobile phase with an alkaline-resistant ODS column. This method was applied to the identification and determination of BMA and its metabolites in rat urine collected after oral administration of BMA. Under the selected ion monitoring mode, the limit of quantitation (signal-to-noise ratio 10) for BMA, N-benzylamphetamine (BAM), p-hydroxybenzphetamine (p-HBMA), p-hydroxy-N-benzylamphetamine (p-HBAM), methamphetamine (MA) and amphetamine (AM) was 700 pg, 300 pg, 500 pg, 1.4 ng, 6 ng and 10 ng in 1 ml of urine, respectively. This analytical method for p-HBMA, structurally closer to the unchanged drug of all the metabolites, was very sensitive, making this a viable metabolite for discriminating the ingestion of BMA longer than the parent drug or other metabolites in rat.  相似文献   

18.
Karlodinium veneficum is a cosmopolitan dinoflagellate with a worldwide distribution in mesohaline temperate waters. The toxins from K. veneficum, or karlotoxins (KmTxs), which have been implicated in fish kill events, have been purified from monoalgal cultures, and shown to possess hemolytic, cytotoxic and ichthyotoxic activities. Three karlotoxins (KmTx 1–1, KmTx 1–3 and KmTx 2) have been isolated from two different North American strains of K. veneficum and characterized using liquid chromatography–mass spectrometry (LC–MS). KmTx 1 karlotoxins have a UV absorption maximum (λmax 225 nm) at lower wavelengths than KmTx 2 karlotoxins (λmax 235 nm). The exact masses and predicted empirical formulae for the karlotoxins (KmTx 1–1, 1308.8210, C67H120O24; KmTx 1–3, 1322.8637, and C69H126O23; KmTx 2, 1344.7938, C67H121ClO24) were determined using high resolution mass spectrometry. Although the individual toxins produce a single peak in reverse phase high performance liquid chromatography (HPLC), MS revealed congeners co-eluting within each peak. These congeners could be separated under normal phase chromatography and revealed a single hydroxylation being responsible for the mass differences. Multistage MS (MSn) showed that the three KmTxs and their congeners share a large portion of their structures including an identical 907 amu core fragment.

These data were used to develop a quantitative LC–MS assay for karlotoxins from cultures and environmental samples. The sensitivity afforded by MS detection compared to UV absorbance allowed toxin quantification at 0.2 ng when injected on column. Aqueous solutions of karlotoxins were found to quantitatively adsorb to PTFE and nylon membrane filters. Aliquots from whole cultures or environmental samples could be concentrated and desalted by adsorption to PTFE syringe filters and karlotoxins eluted with methanol for analysis by LC–MS. This simplified solid phase cleanup afforded new data indicating that each karlotoxin may also exist as sulfated derivatives and also provided a rapid detection method for karlotoxin from environmental samples and whole cultures.  相似文献   


19.
An HPLC-MS method using an atmospheric pressure chemical ionisation (APCI) source has been developed to assist in the differentiation of three ginseng species: Panax quinquefolium (American ginseng), P. ginseng (Chinese ginseng) and P. notoginseng (sanqi) species. The differentiation method relies on the identification of ginsenosides Rf and F11 and notoginsenoside R1. R1 is observed in both P. notoginseng and Chinese ginseng, whilst F1, is found exclusively in the American species. The presence of these compounds permits the definitive identification of the species to be made. The APCI ionisation source has been employed to tackle the matrix interference in analysing Chinese medicinal materials and to minimise the associated matrix effects that are commonly encountered with other ionisation modes. Moreover, the method allows direct interface to conventional HPLC systems. More importantly, chemical reference standards of ginsenosides are not required in this method. This technique provides an alternative approach to analysing high molecular weight polar compounds that typically encountered in complex matrices of Chinese medicinal materials.  相似文献   

20.
A sensitive, specific and reproducible method for the quantitative determination of stanozolol in human hair has been developed. The sample preparation involved a decontamination step of the hair with methylene chloride and the sonication in methanol of 100 mg of powdered hair for 2 h. After elimination of the solvent, the hair sample was solubilized in 1 ml 1 M NaOH, 15 min at 95°C, in the presence of 10 ng stanozolol-d3 used as internal standard. The homogenate was neutralized and extracted using consecutively a solid-phase (Isolute C18) and a liquid–liquid (pentane) extraction. After evaporation of the final organic phase, the dry extract was derivatized using 40 μl MBHFA–TMSI (1000:20, v/v), incubated for 5 min at 80°C, followed by 10 μl of MBHFBA, incubated for 30 min at 80°C. The derivatized extract was analyzed by a Hewlett-Packard GC–MS system with a 5989 B Engine operating in the negative chemical ionization mode of detection. Linearity of the detector response was observed for stanozolol concentrations ranging from 5 to 200 pg/mg with a correlation coefficient of 0.998. The assay was capable of detecting 2 pg of stanozolol per mg of hair when approximately 100 mg hair material was processed, with a quantification limit set at 5 pg/mg. Intra-day precision was 5.9% at 50 pg/mg and 7.8% at 25 pg/mg with extraction recoveries of 79.8 and 75.1%, respectively. The analysis of a 3-cm long hair strand, obtained from a young bodybuilder (27 year old) assuming to be a regular user of Winstrol (stanozolol, 2 mg), revealed the presence of stanozolol at the concentration of 15 pg/mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号