首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prostacyclin receptor (IP), a G protein-coupled receptor, mediates the actions of the prostanoid prostacyclin and its mimetics. IPs from a number of species each contain identically conserved putative isoprenylation CAAX motifs, each with the sequence CSLC. Metabolic labeling of human embryonic kidney (HEK) 293 cells stably overexpressing the hemagluttinin epitope-tagged IP in the presence of [(3)H]mevalonolactone established that the mouse IP is isoprenylated. Studies involving in vitro assays confirmed that recombinant forms of the human and mouse IP are modified by carbon 15 farnesyl isoprenoids. Disruption of isoprenylation, by site-directed mutagenesis of Cys(414) to Ser(414), within the CAAX motif, abolished isoprenylation of IP(SSLC) both in vitro and in transfected cells. Scatchard analysis of the wild type (IP) and mutant (IP(SSLC)) receptor confirmed that each receptor exhibited high and low affinity binding sites for [(3)H]iloprost, which were not influenced by receptor isoprenylation. Whereas stable cell lines overexpressing IP generated significant agonist (iloprost and cicaprost)-mediated increases in cAMP relative to nontransfected cells, cAMP generation by IP(SSLC) cells was not significantly different from the control, nontransfected HEK 293 cells. Moreover, co-expression of the alpha (alpha) subunit of Gs generated significant augmentations in cAMP by IP but not by IP(SSLC) cells. Whereas IP also demonstrated significant, dose-dependent increases in [Ca(2+)](i) in response to iloprost or cicaprost compared with the nontransfected HEK 293 cells, mobilization of [Ca(2+)](i) by IP(SSLC) was significantly impaired. Co-transfection of cells with either Galpha(q) or Galpha(11) resulted in significant augmentation of agonist-mediated [Ca(2+)](i) mobilization by IP cells but not by IP(SSLC) cells or by the control, HEK 293 cells. In addition, inhibition of isoprenylation by lovastatin treatment significantly reduced agonist-mediated cAMP generation by IP in comparison to the nonisoprenylated beta(2) adrenergic receptor or nontreated cells. Hence, isoprenylation of IP does not influence ligand binding but is required for efficient coupling to the effectors adenylyl cyclase and phospholipase C.  相似文献   

2.
The ability of prostacyclin analogues to stimulate adenylyl cyclase (AC) and phospholipase C (PLC) in Chinese hamster ovary (CHO) cells expressing cloned human (hIP) or cloned mouse (mIP) prostacyclin receptors has been compared. For hIP, the order of potency (pEC(50)) for stimulating AC and PLC pathways was similar: AFP-07 (9.3, 8.4)>cicaprost (8.3, 6.9), iloprost (7.9, 6.8)>taprostene (7.4, 6.8)>carbacyclin (6.9, 6.6), PGE(1) (6.6, 5.1). Although the standard IP agonists cicaprost and iloprost behaved similarly in both hIP and mIP receptor-expressing cells, carbacyclin and PGE(1) showed significantly higher potency at the mIP receptor, suggesting that the agonist recognition sites on hIP and mIP receptors are not identical. A further distinction between hIP and mIP receptors was found with taprostene, which had greater efficacy at hIP receptors (AC 94%, PLC 14%) than at mIP receptors (AC 77%, PLC 0%) (cicaprost=100% in each assay).  相似文献   

3.
We have previously established that isoprenylation of the prostacyclin receptor (IP) is required for its efficient G protein coupling and effector signaling (Hayes, J. S., Lawler, O. A., Walsh, M. T., and Kinsella, B. T. (1999) J. Biol. Chem. 274, 23707-23718). In the present study, we sought to investigate whether the IP may actually be subject to palmitoylation in addition to isoprenylation and to establish the functional significance thereof. The human (h) IP was efficiently palmitoylated at Cys(308) and Cys(311), proximal to transmembrane domain 7 within its carboxyl-terminal (C)-tail domain, whereas Cys(309) was not palmitoylated. The isoprenylation-defective hIP(SSLC) underwent palmitoylation but did not efficiently couple to G(s) or G(q), confirming that isoprenylation is required for G protein coupling. Deletion of C-tail sequences distal to Val(307) generated hIP(Delta307) that was neither palmitoylated nor isoprenylated and did not efficiently couple to G(s) or to G(q), whereas hIP(Delta312) was palmitoylated and ably coupled to both effector systems. Conversion of Cys(308), Cys(309), Cys(311), Cys(308,309), or Cys(309,311) to corresponding Ser residues, while leaving the isoprenylation CAAX motif intact, did not affect hIP coupling to G(s) signaling, whereas mutation of Cys(308,311) and Cys(308,309,311) abolished signaling, indicating that palmitoylation of either Cys(308) or Cys(311) is sufficient to maintain functional G(s) coupling. Although mutation of Cys(309) and Cys(311) did not affect hIP-mediated G(q) coupling, mutation of Cys(308) abolished signaling, indicating a specific requirement for palmitoylation of Cys(308) for G(q) coupling. Consistent with this, neither hIP(C308S,C309S), hIP(C308S,C311S), nor hIP(C308S,C309S,C311S) coupled to G(q). Taken together, these data confirm that the hIP is isoprenylated and palmitoylated, and collectively these modifications modulate its G protein coupling and effector signaling. We propose that through lipid modification followed by membrane insertion, the C-tail domain of the IP may contain a double loop structure anchored by the dynamically regulated palmitoyl groups proximal to transmembrane domain 7 and by a distal farnesyl isoprenoid permanently attached to its carboxyl terminus.  相似文献   

4.
Prostacyclin and its I prostanoid receptor, the IP, play central roles in hemostasis and in re-endothelialization in response to vascular injury. Herein, intestinal and kidney enriched PDZ protein (IKEPP) was identified as an interactant of the human (h) IP mediated through binding of PDZ domain 1 (PDZ(D1)) and, to a lesser extent, PDZ(D2) of IKEPP to a carboxyl-terminal Class I 'PDZ ligand' within the hIP. While the interaction is constitutive, agonist-activation of the hIP leads to cAMP-dependent protein kinase (PK) A and PKC-phosphorylation of IKEPP, coinciding with its increased interaction with the hIP. Ectopic expression of IKEPP increases functional expression of the hIP, enhancing its ligand binding and agonist-induced cAMP generation. Originally thought to be restricted to renal and gastrointestinal tissues, herein, IKEPP was also found to be expressed in vascular endothelial cells where it co-localizes and complexes with the hIP. Furthermore, siRNA-disruption of IKEPP expression impaired hIP-induced endothelial cell migration and in vitro angiogenesis, revealing the functional importance of the IKEPP:IP interaction within the vascular endothelium. Identification of IKEPP as a functional interactant of the IP reveals novel mechanistic insights into the role of these proteins within the vasculature and, potentially, in other systems where they are co-expressed.  相似文献   

5.
Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) binding to their common receptor stimulates second messenger accumulation, receptor phosphorylation, and internalization. LLC-PK(1) cells expressing a green fluorescent protein-tagged PTH/PTHrP receptor show time- and dose-dependent receptor internalization. The internalized receptors colocalize with clathrin-coated pits. Internalization is stimulated by PTH analogs that bind to and activate the PTH/PTHrP receptor. Cell lines expressing a mutant protein kinase A regulatory subunit that is resistant to cAMP and/or a mutant receptor (DSEL mutant) that does not activate phospholipase C internalize their receptors normally. In addition, internalization of the wild-type receptor and the DSEL mutant is stimulated by the PTH analog [Gly(1),Arg(19)]hPTH-(1-28), which does not stimulate phospholipase C. Forskolin, IBMX, and the active phorbol ester, phorbol-12-myristate-13-acetate, did not promote receptor internalization or increase PTH-induced internalization. These data indicate that ligand-induced internalization of the PTH/PTHrP receptor requires both ligand binding and receptor activation but does not involve stimulation of adenylate cyclase/protein kinase A or phospholipase C/protein kinase C.  相似文献   

6.
Two native betagamma dimers, beta(1)gamma(1) and beta(1)gamma(2), display very different affinities for receptors. Since these gamma subunits differ in both primary structure and isoprenoid modification, we examined the relative contributions of each to Gbetagamma interaction with receptors. We constructed baculoviruses encoding gamma(1) and gamma(2) subunits with altered CAAX (where A is an aliphatic amino acid) motifs to direct alternate or no prenylation of the gamma chains and a set of gamma(1) and gamma(2) chimeras with the gamma(2) CAAX motif at the carboxyl terminus. All the gamma constructs coexpressed with beta(1) in Sf9 cells yielded beta(1)gamma dimers, which were purified to near homogeneity, and their affinities for receptors and Galpha were quantitatively determined. Whereas alteration of the isoprenoid of gamma(1) from farnesyl to geranylgeranyl and of gamma(2) from geranylgeranyl to farnesyl had no impact on the affinities of beta(1)gamma dimers for Galpha(t), the non-prenylated beta(1)gamma(2) dimer had significantly diminished affinity. Altered prenylation resulted in a <2-fold decrease in affinity of the beta(1)gamma(2) dimer for rhodopsin and a <3-fold change for the beta(1)gamma(1) dimer. In each case with identical isoprenylation, the beta(1)gamma(2) dimer displayed significantly greater affinity for rhodopsin compared with the beta(1)gamma(1) dimer. Furthermore, dimers containing chimeric Ggamma chains with identical geranylgeranyl modification displayed rhodopsin affinities largely determined by the carboxyl-terminal one-third of the protein. These results indicate that isoprenoid modification of the Ggamma subunit is essential for binding to both Galpha and receptors. The isoprenoid type influences the binding affinity for receptors, but not for Galpha. Finally, the primary structure of the Ggamma subunit provides a major contribution to receptor binding of Gbetagamma, with the carboxyl-terminal sequence conferring receptor selectivity.  相似文献   

7.
8.
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization but the mechanisms regulating its intracellular trafficking and/or recycling to the plasma membrane are poorly understood. Herein, we conducted a yeast-two-hybrid screen to identify proteins interacting with the carboxyl-terminal (C)-tail domain of the hIP and discovered a novel interaction with Rab11a. This interaction was confirmed by co-immunoprecipitations in mammalian HEK293 and was augmented by cicaprost stimulation. The hIP co-localized to Rab11-containing recycling endosomes in both HEK293 and endothelial EA.hy 926 cells in a time-dependent manner following cicaprost stimulation. Moreover, over-expression of Rab11a significantly increased recycling of the hIP, while the dominant negative Rab11S25N impaired that recycling. Conversely, while the hIP co-localized to Rab4-positive endosomes in response to cicaprost, ectopic expression of Rab4a did not substantially affect overall recycling nor did Rab4a directly interact with the hIP. The specific interaction between the hIP and Rab11a was dependent on a 22 amino acid (Val299–Gln320) sequence within its C-tail domain and was independent of isoprenylation of the hIP. This study elucidates a critical role for Rab11a in regulating trafficking of the hIP and has identified a novel Rab11 binding domain (RBD) within its C-tail domain that is both necessary and sufficient to mediate interaction with Rab11a.  相似文献   

9.
Prostacyclin is increasingly implicated in re-endothelialization and angiogenesis but through largely unknown mechanisms. Herein the high-density lipoprotein (HDL) scavenger receptor class B, type 1 (SR-B1) adapter protein PDZ domain-containing protein 1 (PDZK1) was identified as an interactant of the human prostacyclin receptor (hIP) involving a Class I PDZ ligand at its carboxyl terminus and PDZ domains 1, 3, and 4 of PDZK1. Although the interaction is constitutive, it may be dynamically regulated following cicaprost activation of the hIP through a mechanism involving cAMP-dependent protein kinase (PK)A-phosphorylation of PDZK1 at Ser-505. Although PDZK1 did not increase overall levels of the hIP, it increased its functional expression at the cell surface, enhancing ligand binding and cicaprost-induced cAMP generation. Consistent with its role in re-endothelialization and angiogenesis, cicaprost activation of the hIP increased endothelial cell migration and tube formation/in vitro angiogenesis, effects completely abrogated by the specific IP antagonist RO1138452. Furthermore, similar to HDL/SR-B1, small interfering RNA (siRNA)-targeted disruption of PDZK1 abolished cicaprost-mediated endothelial responses but did not affect VEGF responses. Considering the essential role played by prostacyclin throughout the cardiovascular system, identification of PDZK1 as a functional interactant of the hIP sheds significant mechanistic insights into the protective roles of these key players, and potentially HDL/SR-B1, within the vascular endothelium.  相似文献   

10.
The pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 (PAC1) receptor is a G protein-coupled receptor and class II receptor member. The receptor domains critical for signaling are unknown. To explore the role of the C terminus, truncations of 63 residues (Tr406), 53 residues (Tr416), 49 residues (Tr420), 44 residues (Tr424), and 37 residues (Tr433) were constructed and expressed in NIH/3T3 cells, and immunofluorescence, radioligand binding, adenylyl cyclase (AC) and phospholipase C (PLC) assays were performed. (125)I-PACAP-27 binding (K(d) = 0.6-1.5 nm) for the Tr406 and Tr433 were similar to wild type Hop and Null splice variants (K(d) = approximately 1.1 nm). Although internalization of ligand for both the Tr406 and Tr433 mutants was reduced to 50-60% at 60 min compared with 76-87% for WT, loss of G protein coupling did not account for differences in internalization. Despite similar binding properties Tr406 and Tr416 mutants showed no AC or PLC response. Addition of 14 amino acids distal to HopTr406 resulted in normal AC and PLC responses. Site-directed mutagenesis indicated that Arg(416) and Ser(417) are essential for G protein activation. The proximal C terminus mediates signal transduction, and the distal is involved with internalization. Two residues within the C terminus, Arg(416) and Ser(417) conserved among class II receptors are the likely sites for G protein coupling.  相似文献   

11.
Nitrogenous bisphosphonates are used clinically to reduce bone resorption associated with osteoporosis or metastatic bone disease, and are recognized as inhibitors of farnesyl diphosphate synthase. Inhibition of this enzyme decreases cellular levels of both farnesyl diphosphate and geranylgeranyl diphosphate which results in a variety of downstream biological effects including inhibition of protein geranylgeranylation. Our lab recently has prepared several isoprenoid bisphosphonates that inhibit protein geranylgeranylation and showed that one selectively inhibits geranylgeranyl diphosphate synthase. This results in depletion of intracellular geranylgeranyl diphosphate and impacts protein geranylgeranylation but does not affect protein farnesylation. To clarify the structural features of isoprenoid bisphosphonates that account for their geranylgeranyl diphosphate synthase inhibition, we have prepared a new group of isoprenoid bisphosphonates. The complete set of compounds has been tested for in vitro inhibition of human recombinant geranylgeranyl diphosphate synthase and cellular inhibition of protein geranylgeranylation. These results show some surprising relationships between in vitro and cellular activity, and will guide development of clinical agents directed at geranylgeranyl diphosphate synthase.  相似文献   

12.
Although M1-M4 muscarinic acetylcholine receptors (mAChRs) in HEK-293 cells internalize on agonist stimulation, only M1, M3, and M4 but not M2 mAChRs recycle to the plasma membrane. To investigate the functional consequences of this phenomenon, we compared desensitization and resensitization of M2 versus M4 mAChRs. Treatment with 1 mM carbachol for 1 h at 37 degrees C reduced numbers of cell surface M2 and M4 mAChRs by 40-50% and M2 and M4 mAChR-mediated inhibition of adenylyl cyclase, intracellular Ca2+ concentration ([Ca2+]i) increases, and phospholipase C (PLC) activation by 60-70%. Receptor-mediated inhibition of adenylyl cyclase and [Ca2+]i increases significantly resensitized within 3 h. However, M4 but not M2 mAChR-mediated PLC activation resensitized. At 16 degrees C, M2 mAChR-mediated [Ca2+]i increases and PLC stimulation desensitized to a similar extent as at 37 degrees C. However, at 16 degrees C, where M2 mAChR internalization is negligible, both M2 mAChR responses resensitized, demonstrating that M2 mAChR resensitization proceeds at the plasma membrane. Examination of M2 mAChR responses following inactivation of cell surface mAChRs by quinuclidinyl benzilate revealed substantial receptor reserve for coupling to [Ca2+]i increases but not to PLC. We conclude that M2 mAChR internalization induces long-lasting PLC desensitization predominantly because receptor loss is not compensated for by receptor recycling or receptor reserve.  相似文献   

13.
Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.  相似文献   

14.
The type 1 corticotropin-releasing hormone receptor (CRH-R1) influences biological responses important for adaptation to stressful stimuli, through activation of multiple downstream effectors. The structural motifs within CRH-R1 that mediate G protein activation and signaling selectivity are unknown. The aim of this study was to gain insights about important structural determinants within the third intracellular loop (IC3) of the human CRH-R1α important for cAMP and ERK1/2 pathways activation and selectivity. We investigated the role of the juxtamembrane regions of IC3 by mutating amino acid cassettes or specific residues to alanine. Although simultaneous tandem alanine mutations of both juxtamembrane regions Arg(292)-Met(295) and Lys(311)-Lys(314) reduced ligand binding and impaired signaling, all other mutant receptors retained high affinity binding, indistinguishable from wild-type receptor. Agonist-activated receptors with tandem mutations at the proximal or distal terminal segments enhanced activation of adenylyl cyclase by 50-75% and diminished activation of inositol trisphosphate and ERK1/2 by 60-80%. Single Ala mutations identified Arg(292), Lys(297), Arg(310), Lys(311), and Lys(314) as important residues for the enhanced activation of adenylyl cyclase, partly due to reduced inhibition of adenylyl cyclase activity by pertussis toxin-sensitive G proteins. In contrast, mutation of Arg(299) reduced receptor signaling activity and cAMP response. Basic as well as aliphatic amino acids within both juxtamembrane regions were identified as important for ERK1/2 phosphorylation through activation of pertussis toxin-sensitive G proteins as well as G(q) proteins. These data uncovered unexpected roles for key amino acids within the highly conserved hydrophobic N- and C-terminal microdomains of IC3 in the coordination of CRH-R1 signaling activity.  相似文献   

15.
B Kühn  T Gudermann 《Biochemistry》1999,38(38):12490-12498
Binding of lutropin/choriogonadotropin (LH/CG) to its cognate receptor results in the activation of adenylyl cyclase and phospholipase C. This divergent signaling of the LH receptor is based on the independent activation of distinct G protein subfamilies, i.e. , Gs, Gi, and potentially also Gq. To examine the selectivity of LH receptor coupling to phospholipase C beta-activating G proteins, we used an in vivo reconstitution system based on the coexpression of the LH receptor and different G proteins in baculovirus-infected insect cells. In this paper, we describe a refined expression strategy for the LH receptor in insect cells. The receptor protein was inserted into the cell membrane at an expression level of 0.8 pmol/mg of membrane protein. Sf9 cells expressing the LH receptor responded to hCG challenge with a concentration-dependent accumulation of intracellular cAMP (EC50 = 630 nM) but not of inositol phosphates, whereas stimulation of the histamine H1 receptor in Sf9 cells led to increased phospholipase C (PLC) activity. Immunoblotting experiments using G protein-specific antisera revealed the absence of quantitative amounts of alpha i in Sf9 cells, whereas alpha s and alpha q/11 were detected. We therefore attempted to restore the hCG-dependent PLC activation by infection of Sf9 cells with viruses encoding the LH receptor and different G protein alpha subunits. HCG stimulation of cells coexpressing the LH receptor and exogenous alpha i2 resulted in stimulation of PLC activity. In cells coinfected with an alpha i3-baculovirus, hCG challenge led to a minor activation of PLC, whereas no hCG-dependent PLC stimulation was observed in cells coexpressing alpha i1. Most notably, coinfection with baculoviruses encoding alpha q or alpha 11 did not reproduce the PLC activation by the LH receptor. Thus, the murine LH receptor activates adenylyl cyclase via Gs and PLC via selective coupling to Gi2.  相似文献   

16.
Mondal MS  Wang Z  Seeds AM  Rando RR 《Biochemistry》2000,39(2):406-412
The activities of small G-proteins are in part regulated by their interactions with GDI proteins. This binding is thought to be dependent on the C-terminal isoprenoid modification (geranylgeranyl or farnesyl) of these proteins. G-proteins are generally isoprenylated/methylated at their C-terminal cysteine residues. A quantitative fluorescence assay is reported here to evaluate the specificity of binding of rhoGDI. A rhodamine-labeled geranylgeranylated/methylated cysteine derivative is used to measure its binding to rhoGDI. Saturable binding in the low micromolar range is found with various geranylgeranylated/farnesylated analogues. Interestingly, the carboxymethylated derivatives bound significantly better than their free acid counterparts, suggesting that the state of methylation of the analogues is important for binding. The binding is also selective with respect to isoprenoid. Analogues containing hydrophobic modifications other than geranylgeranyl or farnesyl do not bind with significant affinities. These data demonstrate a substantial degree of specificity in the binding of isoprenoids to a protein important in signal transduction.  相似文献   

17.
Post-translational prenylation of heterotrimeric G protein gamma subunits is essential for high affinity alpha-beta gamma and alpha-beta gamma-receptor interactions, suggesting that the prenyl group is an important domain in the beta gamma dimer. To determine the role of the prenyl modification in the interaction of beta gamma dimers with effectors, the CAAX (where A indicates alipathic amino acid) motifs in the gamma1, gamma2, and gamma11 subunits were altered to direct modification with different prenyl groups. Six recombinant beta gamma dimers were overexpressed in baculovirus-infected Sf9 insect cells, purified, and examined for their ability to stimulate three phospholipase C-beta isozymes and type II adenylyl cyclase. The native beta1 gamma2 dimer (gamma subunit modified with geranylgeranyl) is more potent and effective in activating phospholipase C-beta than either the beta1 gamma1 (farnesyl) or the beta1 gamma11 (farnesyl) dimers. However, farnesyl modification of the gamma subunit in the beta1 gamma2 dimer (beta1 gamma2-L71S) caused a decrement in its ability to activate phospholipase C-beta. In contrast, both the beta1 gamma1-S74L (geranylgeranyl) and the beta1 gamma11-S73L (geranylgeranyl) dimers were more active than the native forms. The beta1 gamma2 dimer activates type II adenylyl cyclase about 12-fold; however, neither the beta1 gamma1 nor the beta1 gamma11 dimers activate the enzyme. As was the case with phospholipase C-beta, the beta1gamma2-L71S dimer was less able to activate adenylyl cyclase than the native beta1 gamma2 dimer. Interestingly, neither the beta1 gamma1-S74L nor the beta1 gamma11-S73L dimers stimulated adenylyl cyclase. The results suggest that both the amino acid sequence of the gamma subunit and its prenyl group play a role in determining the activity of the beta gamma-effector complex.  相似文献   

18.
Platelet responses at sites of vascular injury are regulated by intracellular cAMP levels, which rise rapidly when prostacyclin (PGI(2)) is released from endothelial cells. Platelet agonists such as ADP and epinephrine suppress PGI(2)-stimulated cAMP formation by activating receptors coupled to G(i) family members, four of which are present in platelets. To address questions about the specificity of receptor:G protein coupling, the regulation of cAMP formation in vivo and the contribution of G(i)-mediated pathways that do not involve adenylyl cyclase, we studied platelets from mice that lacked the alpha subunits of one or more of the three most abundantly expressed G(i) family members and compared the results with platelets from mice that lacked the PGI(2) receptor, IP. As reported previously, loss of G(i2)alpha or G(z)alpha inhibited aggregation in response to ADP and epinephrine, respectively, producing defects that could not be reversed by adding an adenylyl cyclase inhibitor. Platelets that lacked both G(i2)alpha and G(z)alpha showed impaired responses to both agonists, but the impairment was no greater than in the individual knockouts. Loss of G(i3)alpha had no effect either alone or in combination with G(z)alpha. Loss of either G(z)alpha or G(i2)alpha impaired the ability of ADP and epinephrine to inhibit PGI(2)-stimulated adenylyl cyclase activity and caused a 40%-50% rise in basal cAMP levels, whereas loss of G(i3)alpha did not. Conversely, deletion of IP abolished responses to PGI(2) and caused cAMP levels to fall by 30%, effects that did not translate into enhanced responsiveness to agonists ex vivo. From these results we conclude that 1) cAMP levels in circulating platelets reflect ongoing signaling through G(i2), G(z), and IP, but not G(i3); 2) platelet epinephrine (alpha(2A)-adrenergic) and ADP (P2Y12) receptors display strong preferences among G(i) family members with little evidence of redundancy; and 3) these receptor preferences do not extend to G(i3). Finally, the failure of ADP and epinephrine to inhibit basal, as opposed to PGI(2)-stimulated, cAMP formation highlights the need during platelet activation for G(i) signaling pathways that involve effectors other than adenylyl cyclase.  相似文献   

19.
Five cognate G protein-coupled receptors (S1P(1-5)) have been shown to mediate various cellular effects of sphingosine 1-phosphate (S1P). Here we report the generation of mice null for S1P(2) and for both S1P(2) and S1P(3). S1P(2)-null mice were viable and fertile and developed normally. The litter sizes from S1P(2)S1P(3) double-null crosses were remarkably reduced compared with controls, and double-null pups often did not survive through infancy, although double-null survivors lacked any obvious phenotype. Mouse embryonic fibroblasts (MEFs) were examined for the effects of receptor deletions on S1P signaling pathways. Wild-type MEFs were responsive to S1P in activation of Rho and phospholipase C (PLC), intracellular calcium mobilization, and inhibition of forskolin-activated adenylyl cyclase. S1P(2)-null MEFs showed a significant decrease in Rho activation, but no effect on PLC activation, calcium mobilization, or adenylyl cyclase inhibition. Double-null MEFs displayed a complete loss of Rho activation and a significant decrease in PLC activation and calcium mobilization, with no effect on adenylyl cyclase inhibition. These data extend our previous findings on S1P(3)-null mice and indicate preferential coupling of the S1P(2) and S1P(3) receptors to Rho and PLC/Ca(2+) pathways, respectively. Although either receptor subtype supports embryonic development, deletion of both produces marked perinatal lethality, demonstrating an essential role for combined S1P signaling by these receptors.  相似文献   

20.
Although the function of laminin in the basement membrane is known, the function of soluble “neuronal” laminin is unknown. Since laminin is neuroprotective, we determined whether the soluble laminin-1 induces signaling for neuroprotection via its 67KDa laminin-1 receptor (67LR). Treatment of Neuroscreen-1 (NS-1) cells with laminin-1 or YIGSR peptide, which corresponds to a sequence in laminin-1 β1 chain that binds to 67LR, induced a decrease in the cell-surface expression of 67LR and caused its internalization. Furthermore, intracellular cAMP-elevating agents, dibutyryl-cAMP, forskolin, and rolipram, also induced this internalization. Both soluble laminin-1 and YIGSR induced a sustained elevation of intracellular cAMP under defined conditions, suggesting a causal role of cAMP in the endocytosis of 67LR. This endocytosis was not observed in cells deficient in protein kinase A (PKA) nor in cells treated with either SQ 22536, an inhibitor for adenylyl cyclase, or ESI-09, an inhibitor for the exchange protein directly activated by cAMP (Epac). In addition, when internalization occurred in NS-1 cells, 67LR and adenylyl cyclase were localized in early endosomes. Under conditions in which endocytosis had occurred, both laminin-1 and YIGSR protected NS-1 cells from cell death induced by serum withdrawal. However, under conditions in which endocytosis did not occur, neither laminin-1 nor YIGSR protected these cells. Conceivably, the binding of laminin-1 to 67LR causes initial signaling through PKA and Epac, which causes the internalization of 67LR, along with signaling enzymes, such as adenylyl cyclase, into early endosomes. This causes sustained signaling for protection against cell death induced by serum withdrawal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号