首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have developed a model of hormonal carcinogenesis in BALB/c female mice, in which MPA induced ductal mammary adenocarcinomas, expressing high levels of estrogen and progesterone receptors (ER and PR). A series of tumor lines, retaining both PR and ER expression, were obtained from selected tumors, which are maintained by syngeneic passages. In this model progesterone behaves as the growth-stimulating hormone (progesterone-dependent or PD tumors), whereas estrogens induce tumor regression. Through selective treatments we were able to derive a series of progesterone-independent (PI) variants. These lines do not require progesterone treatment to grow in ovariectomized female BALB/c mice, but retain, however, the expression of ER and PR. The aim of this paper is to investigate a possible regulatory role of the progesterone receptor (PR) on PI tumor growth. ER and PR were detected by immunocytochemistry in all lines studied. They were also characterized using biochemical assays and Scatchard plots. No differences in Kd of PR or ER were detected in PI variants. AR or GR were not detected in tumor samples using biochemical assays. Estradiol (5 mg silastic pellet) induced complete tumor regression in all tumors tested. We also evaluated the effects of different antiprogestins on tumor growth. Onapristone (10 mg/kg/day) and mifepristone (4.5 mg/kg/day) were able to induce complete tumor regression. The antiandrogen flutamide (5 mg silastic pellet) had no effect on tumor growth in agreement with the lack of androgen receptors. We used an in vitro approach to corroborate that the antiprogestin-induced inhibition was not attributable to an intrinsic effect. Cultures of a selected PI line were treated with PR antisense oligodeoxynucleotides (ASPR) to inhibit in vitro cell proliferation. A significant decrease of 3H-thymidine uptake was observed in cells of a PI line growing in the presence of 2.5% charcoalized fetal calf serum and 0.8-20 microg/ml ASPR. It can be concluded that the PR pathway is an essential path in the growth stimulation of PI tumors.  相似文献   

2.
At present, there is an extensive body of literature documenting the participation of estrogen receptors (ER) and progesterone receptors (PR) in mammary gene expression. Yet, the precise roles of these receptors in regulating mammary development, carcinogenesis and the growth of a subset of tumors still remain unclear. Mammary glands are composed of various cell types with different developmental potentials. Further, ultimately, that it is their mutual interactions which dictate the behavior of mammary epithelial cells. Therefore, to resolve the roles of ER and PR in normal mammary growth, differentiation and carcinogenesis, analyses for the expression of these receptors at the level of individual cell types is of paramount importance. Accordingly, in the present studies using immunolocalization techniques, we document the ontogeny and cellular distribution of ER and PR during mammary development and in response to ovarian hormones and aging. In addition, we discuss the potential biological significances of the expression patterns of ER and PR during various physiological states. We believe that the observations reported here should provide a conceptual framework(s) for elucidating the roles of ER and PR in normal and neoplastic mammary tissues.  相似文献   

3.
4.
Steroids and their nuclear receptors play crucial roles in the development and maintenance of normal functions of the human mammary gland (HMG). They have also been implicated in breast carcinogenesis. However, the study of steroid action in normal HMG has been hampered by experimental difficulties. By using a newly established in vitro long-term culture method, we successfully cultured normal HMG tissue for more than 2 months without detriment to its morphology or steroid receptor expression. Expression of the cellular structural and extracellular matrix proteins was similar to that prior to culture, and HMG tissue retained its properties of steroid receptor expression and regulation. Addition of 17-beta estrogen to mammary tissues markedly increased the expression of progesterone receptor (PR) but only slightly affected that of the estrogen receptor (ER). Medroxyprogesterone acetate down-regulated the expression of PR within 24-48 h and also increased the expression of androgen receptor. When HMG tissue was cultured in medium containing normal or dextran-coated charcoal-stripped fetal calf serum or normal human serum, the expression and regulation of steroid hormone receptors were similar, although different in extent. When serum was omitted, the morphology of HMG was normal after 1 week, but the expression and regulation of ER and PR were altered. Thus, as HMGs retain the capacity to express steroid receptors in culture, this long-term culture system is probably a good model for studying the regulation of the mammary gland by steroids.  相似文献   

5.
We have developed a murine mammary tumor cell line, MC4-L4, and after 15 passages, a spindle-shaped population became evident. The cuboidal cells, MC4-L4E, cloned by limit dilution, proved to be epithelial tumor cells. When inoculated in syngeneic mice, they gave rise to invasive metastatic carcinomas expressing estrogen and progesterone receptors. These tumors regressed after anti-progestin treatment and stopped growing after 17-beta-estradiol administration. In vitro, they were insensitive to medroxyprogesterone acetate (MPA), 17-beta-estradiol, and EGF and were inhibited by TGFbeta1. They expressed mutated p53 and estrogen receptors alpha; progesterone receptors were undetectable. Cells were polyploid and shared the same four common marker chromosomes present in the parental tumor in addition to an exclusive marker. Spindle-shaped cells, MC4-L4F, were selected by differential attachment and detachment and proved to be non-epithelial non-tumorigenic cells. They were cytokeratin negative, showed mesenchymal features by electron microscopy, differentiated to adipocytes when treated with an adipogenic cocktail, were stimulated by TGFbeta1 and EGF, showed a wild-type p53, and did not exhibit the marker chromosomes of the parental tumor. Although they expressed estrogen receptors alpha, they were insensitive to 17-beta-estradiol in proliferation assays. Co-cultures of both cell types had a synergic effect on progesterone receptors expression and on cell proliferation, being the epithelial cells, the most responsive ones, and 17-beta-estradiol increased cell proliferation only in co-cultures. Cytogenetic studies and data on p53 mutations rule out the possibility of an epithelial mesenchymal transition. Their unique characteristics make them an excellent model to be used in studies of epithelial-stromal interactions in the context of hormone responsiveness in hormone related tumors.  相似文献   

6.
The expression of estrogen (ER) and progesterone receptors (PR) in the endometrium is regulated by steroid hormones. An increase in plasma estrogen leads to upregulation of the number of both steroid receptors, whereas a decrease in both receptors population is due to high concentration of plasma progesterone. To study the exact effect of different concentrations of beta-estradiol and progesterone on canine epithelial and stromal endometrial cells an in vitro model from dog uterus was developed and kept for 20 days. Material was obtained from healthy dogs, undergoing ovariohysterectomy. Endometrial epithelial and stromal cells were gained after collagenase treatment, followed by filtration steps. Electron microscopy and immunolabeling were used to study cell morphology and differentiation. Immunocytochemistry was used to determine proliferation rate (Ki-67), ER and PR status on Days 3, 8, 10, 13, and 20. Mitotic activity of both cells was stimulated with different concentrations of steroids and revealed high values until cells reached confluency. ER and PR expression in confluent layer from epithelial and stromal cells was upregulated with beta-estradiol. In addition progesterone significant downregulated both receptors population in stromal cells, whereas the reduction was less pronounced in epithelial cells. Results showed that our in vitro system is a useful tool to study the influence of beta-estradiol and progesterone on cell proliferation rate, ER and PR expression. The primary cell culture model helps to avoid experiments on living animals.  相似文献   

7.
Progesterone receptors (PRs) are prognostic markers in breast cancers irrespective of the patient's progestational status. However, there are two PR isoforms, PR-A and PR-B, that are equimolar in the normal breast but dysregulated in advanced disease. Postmenopausal, tamoxifen-treated patients with estrogen receptor (ER)-positive, PR-A-rich tumors have much faster disease recurrence than patients with PR-B-rich tumors. To study the mechanisms we engineered ER+ breast cancer cells that express each PR isoform under control of an inducible promoter. We identified 79 genes regulated by progesterone (P), mainly by PR-B, and 51 genes regulated without progesterone, mainly by PR-A. Only nine genes were regulated with and without ligand, leading to definition of three classes: I) genes regulated only by liganded PR; II) genes regulated only by unliganded PR; III) genes regulated by both. Unliganded PR-A and PR-B differentially regulate genes that coordinate extracellular signaling pathways and influence tumor cell biology. Indeed, in the absence of P, compared with ER+/PR-B+ or PR- cells, ER+, PR-A+ cells exhibit an aggressive phenotype, are more adhesive to an extracellular matrix, and are more migratory. Additionally, unliganded PR-A and PR-B both inhibit cell growth and provoke resistance to Taxol-induced apoptosis. We propose that PR-A:PR-B ratios, even in the absence of P, influence the biology and treatment response of ER+ tumors, that PR-A isoforms are functionally dominant in P-deficient states, and that PR-A rich tumors are especially aggressive.  相似文献   

8.
We report a double-agar clonogenic system adapted to human breast cancer. We optimized the conditions for cell growth and clonogenicity with respect to hormones (insulin, estradiol, progesterone) and components of the extracellular matrix (collagen, laminin and fibronectin). Using our experimental improvements, 67% of the breast tumor samples received were grown successfully. Tests on 21 tumors with three agents: Doxorubicin, Methotrexate and 5-Fluorouracil permit objective discrimination of the in vitro pharmacosensitivity of human breast tumors. Flow cytometric analysis reveal that 64% of the tumors were diploid and 36% were aneuploid. The aneuploid tumors grew better in the double agar layer system used for the clonogenic assay. The diploid tumors were especially rich in estrogen (ER+) and progesterone (PR+) receptors whereas the aneuploid tumors were mostly estrogen and progesterone receptors negative (ER/PR). Finally, we noted no difference in drug responsiveness depending on the tumor ploidy and steroid receptor content.Abbreviations DCC dextran coated charcoal - DI DNA index - DXB Doxorubicin - ECM extracellular matrix component - ER estrogen receptors - FCM flow cytometry - 5-FU 5-Fluorouracil - HTSCA human tumor stem cell assay - MTX Methotrexate - PBC primary breast carcinoma - PI proliferative index - PR progesterone receptors - SPF S phase fraction  相似文献   

9.
10.
The relationship between the cellular uptake of glucocorticoid hormones, the binding of these hormones to specific in vitro receptors, and the induction of mouse mammary tumor viruses in an established mouse mammary tumor cell line was highly correlated. These results suggest that the induction of mouse mammary tumor virus by glucocorticoid hormones is a physiological process acting through a mechanism of high affinity, saturable steroid-receptors. A temperature-sensitive or salt-dependent step following glucocorticoid-receptor interaction was required for nuclear uptake of the steroid. Induction studies with different adrenocorticoids indicate that the synthetic glucocorticoid, dexamethasone (1,4-pregnadiene-9-fluor-16alpha-methyl-11beta,17alpha,21-triol-3,20-dione), is the most potent inducer of mouse mammary tumor viruses and all steroids which caused significant induction were glucocorticoids. Other glucocorticoids appear to stimulate murine mammary tumor virus production by a mechanism similar to that of dexamethasone; for example, corticosterone competes with dexamethasone for binding to the glucocorticoid receptor and blocks the uptake of dexamethasone into cells. Progesterone also blocks the cellular uptake of dexamethasone and can bind to the glucocorticoid receptor at low concentrations (10-7 to 10-8 M) but progesterone does not consistently induce virus at hormone concentrations even as high as 10-4 M. Thus, in this system, binding to a cytoplasmic receptor is necessary but not sufficient for induction by glucocorticoids. Estrogens and androgens interfere with receptor binding and cellular uptake of dexamethasone but only at much higher concentration (10-4 M) than progesterone, and do not induce mammary tumor virus production. Although there was a positive correlation between steroid structure, binding, and biologic induction, other factors clearly affect the physiological manifestations of steroid actions. Mouse cells with comparable cytoplasmic receptor levels and comparable nuclear uptake differed absolutely in their degree of murine mammary tumor virus induction following hormone treatment. Although all mouse cells examined contain comparable levels of murine mammary tumor virus DNA, only cells producing constitutive levels of murine mammary tumor virus RNA could be induced to higher levels by a variety of glucocorticoids.  相似文献   

11.
Homogenates of human breast tumors were incubated with 3H-androsterone and the percentage conversions to androsterone glucosiduronate were determined. In addition, separate portions of the tumors were analyzed for estrogen receptor (ER) and progesterone receptor (PR) to see whether conjugation and receptor content could be correlated. Sixteen of thirty-two tumor homogenates formed androsterone glucosiduronate (0.03-5.9%) from androsterone. There was no correlation between ER content and glucuronyltransferase activity. Considering the twenty-six malignant mammary tumors, of the fifteen PR positive types, five (one-third) formed the conjugate. In contrast, almost two-thirds (seven of eleven) of the PR negative tumors formed androsterone glucosiduronate. These correlations indicate a trend, but not of statistical significance.  相似文献   

12.
We evaluated the presence of estrogen (ER) and progesterone (PR) receptors, and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) enzymes in 18 feline mammary tubulopapillary carcinomas. Immunohistochemistry was performed to localize ER, PR, MMP-2 and MMP-9 in situ. Western blotting and zymographic analyses also were performed to investigate the presence and activities of MMP-2 and MMP-9 enzymes in fresh tissue homogenates. ER immune expression was detected in five samples (27.7%) and PR was positive in sixteen (88.8%) samples. Diffuse cytoplasmic staining of MMP-2 and MMP-9 in neoplastic mammary epithelial cells, stromal fibroblasts and inflammatory cell was evident. MMP-2 and MMP-9 staining was observed also in metastasizing neoplastic cells within lymphatic vessels. MMP-2 and MMP-9 enzymes and their activities in fresh tumor homogenates were demonstrated by zymography. Comparison of MMP-9 gelatinolytic bands from tumor samples and controls revealed a statistically significant difference. We demonstrated elevated MMP-9 and MMP-2 levels in tumor samples by Western blotting; analysis of protein bands revealed 1.9-to-3 fold increase in MMP-9 in tumor samples and the difference was statistically significant. Our results suggest that the expression of MMP-9 can be an important indicator for tumor progression and the possible metastatic nature of feline tubulopapillary carcinomas.  相似文献   

13.
We evaluated the presence of estrogen (ER) and progesterone (PR) receptors, and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) enzymes in 18 feline mammary tubulopapillary carcinomas. Immunohistochemistry was performed to localize ER, PR, MMP-2 and MMP-9 in situ. Western blotting and zymographic analyses also were performed to investigate the presence and activities of MMP-2 and MMP-9 enzymes in fresh tissue homogenates. ER immune expression was detected in five samples (27.7%) and PR was positive in sixteen (88.8%) samples. Diffuse cytoplasmic staining of MMP-2 and MMP-9 in neoplastic mammary epithelial cells, stromal fibroblasts and inflammatory cell was evident. MMP-2 and MMP-9 staining was observed also in metastasizing neoplastic cells within lymphatic vessels. MMP-2 and MMP-9 enzymes and their activities in fresh tumor homogenates were demonstrated by zymography. Comparison of MMP-9 gelatinolytic bands from tumor samples and controls revealed a statistically significant difference. We demonstrated elevated MMP-9 and MMP-2 levels in tumor samples by Western blotting; analysis of protein bands revealed 1.9-to-3 fold increase in MMP-9 in tumor samples and the difference was statistically significant. Our results suggest that the expression of MMP-9 can be an important indicator for tumor progression and the possible metastatic nature of feline tubulopapillary carcinomas.  相似文献   

14.
Multiple proto-signals (p-NLSs) for nuclear targeting, none of which suffices on its own, cooperate in the estrogen (ER) and progesterone (PR) receptors. In the ER, an estrogen-inducible p-NLS was found in the hormone binding domain (HBD), in addition to three lysine/arginine-rich motifs resembling prototype constitutive nuclear localization signals (NLSs). The inducible and the constitutive ER p-NLSs cooperate in the presence of estrogen and hydroxy-tamoxifen, but not in the presence of ICI 164,384. In the PR, three p-NLSs, two of which are located within and directly adjacent to the second zinc finger, cooperate with each other and a weak hormone-inducible p-NLS in the PR HBD. No 'masking' of p-NLSs by the HBD was observed for ER and PR, while the ligand-free glucocorticoid receptor HBD inhibited the activity of both homologous and heterologous NLSs. Nuclear co-translocation experiments indicated that in vivo the stability of ER and PR dimers is hormonally controlled, but that, in the absence of the cognate ligand, ER dimers are more stable than PR dimers. This is likely to account for the differential hormone requirement of ER and PR DNA binding in vitro.  相似文献   

15.
目的在非小细胞肺癌中检测乳腺癌易感基因(BRCA2)的表达和ER、PR及c-erbB-2蛋白表达特点,探讨BRCA2的表达与ER、PR及c-erbB-2之间的相关性。方法免疫组织化学SP法检测了42例手术切除的非小细胞肺癌中ER、PR、c-erbB-2和BRCA2蛋白表达,根据各种临床病理因素分组进行BRCA2表达阳性率统计学分析。结果BRCA2蛋白表达阳性15例(35.7%);BRCA2蛋白表达阳性率在大于或等于60岁与小于60岁两年龄组间、男女组间、鳞状细胞癌组与腺癌组间及其分化程度以及c-erbB-2表达阳性组与阴性组间比较有显著性差异(P〈0.01);而在有无淋巴结转移组间BRCA2蛋白表达阳性率比较无显著性差异(P〉0.05);ER、PR在所有非小细胞肺癌病例中均为阴性。结论非小细胞肺癌可见BRCA2和c-erbB-2的表达,其两者的表达具有相关性,可能存在协同作用。提示BRCA2和c-erbB-2可作为反映非小细胞肺癌恶性特征的一个检测指标。  相似文献   

16.
17.
Steroid hormone receptors can be divided into two subfamilies according to the structure of their DNA binding domains and the nucleotide sequences which they recognize. The glucocorticoid receptor and the progesterone receptor (PR) recognize an imperfect palindrome (glucocorticoid responsive element/progesterone responsive element [GRE/PRE]) with the conserved half-sequence TGTYCY, whereas the estrogen receptor (ER) recognizes a palindrome (estrogen responsive element) with the half-sequence TGACC. A series of symmetric and asymmetric variants of these hormone responsive elements (HREs) have been tested for receptor binding and for the ability to mediate induction in vivo. High-resolution analysis demonstrates that the overall number and distribution of contacts with the N-7 position of guanines and with the phosphate backbone of various HREs are quite similar for PR and ER. However, PR and glucocorticoid receptor, but not ER, are able to contact the 5'-methyl group of thymines found in position 3 of HREs, as shown by potassium permanganate interference. The ER mutant HE84, which contains a single amino acid exchange, Glu-203 to Gly, in the knuckle of ER, creates a promiscuous ER that is able to bind to GRE/PREs by contacting this thymine. Elements with the sequence GGTCAcagTGTYCT that represent hybrids between an estrogen response element and a GRE/PRE respond to estrogens, glucocorticoids, and progestins in vivo and bind all three wild-type receptors in vitro. These hybrid HREs could serve to confer promiscuous gene regulation.  相似文献   

18.
Although estrogen can bind both types of estrogen receptors, estrogen receptor-alpha (ERα) is dominant in mediating estrogenic activity in the mammary gland and uterus. Excessive estrogenic activity such as estrogen-based postmenopausal hormone replacement therapy increases the risk for breast and endometrial cancers. The adverse effect of estrogen on uterine endometrium can be opposed by progestins; however, estrogen-plus-progestin regimen imposes substantially greater risk for breast cancer than estrogen alone. In this study, we used ERα-selective agonist propylpyrazole-triol (PPT) and ERβ-selective agonist diarylpropionitrile (DPN) to activate ERα and estrogen receptor-beta (ERβ) separately in an ovariectomized rat model and determined whether PPT-activated ERα function in the mammary gland can be suppressed by DPN activated ERβ. Ovariectomized rats were randomly divided into six groups and treated with DMSO (control), DPN, PPT, PPT/DPN, PPT/Progesterone, and PPT/Progesterone/DPN, respectively. In the mammary gland, PPT but not DPN increased cell proliferation and amphiregulin gene expression; importantly, the stimulatory effect of PPT on mammary cell proliferation and amphiregulin gene expression can be suppressed by DPN. In the uterus, the effect of PPT on uterine weight and endometrial cell proliferation was not inhibited by DPN but can be inhibited by progesterone. These data provide in vivo evidence that PPT activated ERα activity in the mammary gland can be opposed by ERβ-selective agonist DPN, which may be explored for the development of better hormone replacement therapy regimen with less risk for breast cancer.  相似文献   

19.
20.
Cows may provide insights into mammary development that are not easily obtained using mouse models. Mammary growth in control and estrogen-treated calves was investigated to evaluate general patterns of proliferation and relationship to estrogen receptor (ER) expression. After in vivo labeling with bromodeoxyuridine (BrdU), serial histological sections of mammary tissue were used to generate three-dimensional reconstructions. BrdU-labeled cells were present throughout the highly branched terminal ducts. ER and progesterone receptors (PR) were colocalized in nuclei of ductal epithelial cells. However, basal cells and epithelial cells that were located in the central region of epithelial cords and those that lined the lumen of patent ducts were ER- and PR-negative, as were stromal cells. Cells along the basal portion of the epithelium were not myoepithelial. ER in mammary epithelial cells but not stromal cells is analogous to patterns in human breast but contrasts with localization in murine mammary gland. After estrogen stimulation, 99% of BrdU-labeled (and Ki67-labeled) epithelial cells were ER-negative. Data suggest that proliferation in response to estrogen treatment was initiated within ER-positive epithelial cells of the developing mammary gland and the signal was propagated in paracrine fashion to stromal elements and ER-negative epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号