首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the volume of rat liver nuclei have been monitored as a function of modifications in ionic environment (from 0 to 20 mM), temperature (from 4 to 37°C) and pH (from 1 to 8). An abrupt reduction of nuclear volume occurred with increasing ion concentration, this contraction being more pronounced with bivalent (either Ca2+ or Mg2+) than with monovalent (either Na+ or K+) cations. The lowering of pH produced a similar effect. Parallel changes in chromatin structure took place at the same time as phase-like transitions. Atomic absorption spectroscopy allowed determination of free and nuclei-bound ions, pointing to the presence of a sizeable number of free binding sites for chromatin-DNA even within intact nuclei. DNA-phosphate sites appear to be neutralized by ions strictly according to the size of the electric charge and polyelectrolyte theory. Partial digestion (by micrococcal nuclease) or simple breaks (by chemical carcinogens) of the chromatin-DNA fiber caused respectively elimination or reduction of the abrupt volume changes in the intact nuclei. The apparent role of chromatin structure versus nuclear matrix in determining the shape and volume of intact nuclei is briefly discussed.  相似文献   

2.
Summary EGTA in moderate concentrations, sufficient to remove all Ca2+ from the cell surface, blocks pinocytosis. But in higher concentrations of EGTA, which chelate also Mg2+, the pinocytosis reappears and is strongly enhanced. Simultaneous removal of both Ca and Mg ions by EDTA brings about only potentiating effect. Reintroduction of either Ca or Mg separately, demonstrates that Mg2+ is a powerful inhibitor of pinocytosis. The influence of chelators on the pinocytosis is attributed respectively to their selective or unspecific influence on both bivalent ions at the cell surface, without affecting the intracellular contraction mechanism.Study supported by the Research Project II. 1 of the Polish Academy of Science.  相似文献   

3.
1. The molecular weight of the calcium-binding protein of rabbit white skeletal muscle was estimated to be 18500 by sedimentation equilibrium and electrophoresis in sodium dodecyl sulphate. 2. Addition of 2 Ca2+ ions per molecule produced reversible changes in the u.v.-absorption spectrum that are interpreted as arising from conformational changes in the structure of the protein. 3. Cd2+ was almost as effective as Ca2+ in producing the spectral changes. Other bivalent metal ions, particularly Mg2+, were less effective. 4. Binding of Ca2+ by the calcium-binding protein produced an increase in mobility to the anode on electrophoresis in 6m-urea at pH8.6. The Ca2+-saturated form of the protein was more retarded on gel filtration than the Ca2+-free form. 5. In the presence of Ca2+ the calcium-binding protein formed an equimolar complex with the inhibitory protein. This complex was stable in 8m-urea and in the pH range 7.0–8.6. 6. An isotope-dilution method for the measurement of the content of calcium-binding protein in whole muscle is described. In rabbit psoas muscle the ratio of actin monomers to molecules of calcium-binding protein was approx. 7:1. Similar values were obtained for red skeletal and cardiac muscle. 7. Evidence is presented indicating that in the rabbit the inhibitory protein of the troponin complex of red skeletal and cardiac muscles is different from the inhibitory protein of white skeletal muscle.  相似文献   

4.
The thermal denaturation method was employed to study the effect of Ca2+ and Mn2+ ions on the DNA helix–coil transition parameters at Na+ concentrations of 10?3–10?1M. At low ion concentrations, thermal stability increases, the melting range passes through a maximum, and the denaturation curves become asymmetric. These changes are quantitatively similar for Mn2+ and Ca2+ ions. With a further increase in the concentration of bivalent ions, the conformational transition temperatures pass through a maximum, and the melting range first tends to saturation and then rapidly decreases to 1–2°C. The Mn2+ concentrations, at which the above effects occur, are an order of magnitude lower than the Ca2+ concentrations. Comparison of experimental results and calculation in terms of the ligand theory permitted estimation of binding constants characterizing association between Mn2+ and Ca2+ ions and bases of native and denatured DNA. We show that, unlike the interaction with phosphates, bivalent ion–DNA base binding is weakly dependent on monovalent ion concentration in the solution.  相似文献   

5.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

6.
ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2+] ([Ca2+]m) and consequently mitochondrial bioenergetics by several postulated mechanisms. We tested how [Ca2+]m is affected by H2PO4 (Pi), Mg2+, calcium uniporter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2+]m, membrane potential, redox state, matrix volume, pHm, and O2 consumption in guinea pig heart mitochondria with or without ruthenium red, carboxyatractyloside, or oligomycin, and at several levels of Mg2+ and Pi. Energized mitochondria showed a dose-dependent increase in [Ca2+]m after adding CaCl2 equivalent to 20, 114, and 485 nM extramatrix free [Ca2+] ([Ca2+]e); this uptake was attenuated at higher buffer Mg2+. Adding ADP transiently increased [Ca2+]m up to twofold. The ADP effect on increasing [Ca2+]m could be partially attributed to matrix contraction, but was little affected by ruthenium red or changes in Mg2+ or Pi. Oligomycin largely reduced the increase in [Ca2+]m by ADP compared to control, and [Ca2+]m did not return to baseline. Carboxyatractyloside prevented the ADP-induced [Ca2+]m increase. Adding CaCl2 had no effect on bioenergetics, except for a small increase in state 2 and state 4 respiration at 485 nM [Ca2+]e. These data suggest that matrix ADP influx and subsequent phosphorylation increase [Ca2+]m largely due to the interaction of matrix Ca2+ with ATP, ADP, Pi, and cation buffering proteins in the matrix.  相似文献   

7.
Changes in skeletal muscle volume induce localized sarcoplasmic reticulum (SR) Ca2+ release (LCR) events, which are sustained for many minutes, suggesting a possible signaling role in plasticity or pathology. However, the mechanism by which cell volume influences SR Ca2+ release is uncertain. In the present study, rat flexor digitorum brevis fibers were superfused with isoosmotic Tyrode''s solution before exposure to either hyperosmotic (404 mOsm) or hypoosmotic (254 mOsm) solutions, and the effects on cell volume, membrane potential (Em), and intracellular Ca2+ ([Ca2+]i) were determined. To allow comparison with previous studies, solutions were made hyperosmotic by the addition of sugars or divalent cations, or they were made hypoosmotic by reducing [NaCl]o. All hyperosmotic solutions induced a sustained decrease in cell volume, which was accompanied by membrane depolarization (by 14–18 mV; n = 40) and SR Ca2+ release. However, sugar solutions caused a global increase in [Ca2+]i, whereas solutions made hyperosmotic by the addition of divalent cations only induced LCR. Decreasing osmolarity induced an increase in cell volume and a negative shift in Em (by 15.04 ± 1.85 mV; n = 8), whereas [Ca2+]i was unaffected. However, on return to the isoosmotic solution, restoration of cell volume and Em was associated with LCR. Both global and localized SR Ca2+ release were abolished by the dihydropyridine receptor inhibitor nifedipine by sustained depolarization of the sarcolemmal or by the addition of the ryanodine receptor 1 inhibitor tetracaine. Inhibitors of the Na-K-2Cl (NKCC) cotransporter markedly inhibited the depolarization associated with hyperosmotic shrinkage and the associated SR Ca2+ release. These findings suggest (1) that the depolarization that accompanies a decrease in cell volume is the primary event leading to SR Ca2+ release, and (2) that volume-dependent regulation of the NKCC cotransporter contributes to the observed changes in Em. The differing effects of the osmotic agents can be explained by the screening of fixed charges by divalent ions.  相似文献   

8.
In the standard accepted concept, contractility is the intrinsic ability of heart muscle to generate force and to shorten, independently of changes in the preload or afterload with fixed heart rates. At molecular level the crux of the contractile process lies in the changing concentrations of Ca2+ ions in the myocardial cytosol. Ca2+ ions enter through the calcium channel that opens in response to the wave of depolarization that travels along the sarcolemma. These Ca2+ ions "trigger" the release of more calcium from the sarcoplasmic reticulum (SR) and thereby initiate a contraction-relaxation cycle. In the past, several attempts were made to transfer the pure physiological concept of contractility, expressed in the isolated myocardial fiber by the maximal velocity of contraction of unloaded muscle fiber (Vmax), to the in vivo beating heart. Suga and Sagawa achieved this aim by measuring pressure/volume loops in the intact heart: during a positive inotropic intervention, the pressure volume loop reflects a smaller end-systolic volume and a higher end-systolic pressure, so that the slope of the pressure volume relationship moves upward and to the left. The pressure volume relationship is the most reliable index for assessing myocardial contractility in the intact circulation and is almost insensitive to changes in preload and after load. This is widely used in animal studies and occasionally clinically. The limit of the pressure volume relationship is that it fails to take into account the frequency-dependent regulation of contractility: the frequency-dependent control of transmembrane Ca2+ entry via voltage-gated Ca2+ channels provides cardiac cells with a highly sophisticated short-term system for the regulation of intracellular Ca2+ homeostasis. An increased stimulation rate increases the force of contraction: the explanation is repetitive Ca2+ entry with each depolarization and, hence, an accumulation of cytosolic calcium. As the heart fails, there is a change in the gene expression from the normal adult pattern to that of fetal life with an inversion of the normal positive slope of the force-frequency relation: systolic calcium release and diastolic calcium reuptake process is lowered at the basal state and, instead of accelerating for increasing heart rates, slows down. Since the force-frequency relation uncovers initial alteration of contractility, as an intermediate step between normal and abnormal contractility at rest, a practical index to measure it is mandatory. Measuring end-systolic elastance for increasing heart rates is impractical: increasing heart rates with atrial pacing has to be adjunct to the left ventricular conductance catheter, to the left ventricular pressure catheter, to the vena cava balloon, and to afterload changes. Furthermore, a noninvasive index is needed. Noninvasive measurement of the pressure/volume ratio for increasing heart rates during stress in the echo lab could be the practical answer to this new clinical demand in the current years of a dramatic increase in the number of heart failure patients.  相似文献   

9.
A fifteen minute incubation of spinach chloroplasts with the divalent Ca2+ chelator, EGTA, in concentrations 50–250 μM, inhibits electron transport through both photosystems. All photosystem II partial reactions, including indophenol, ferricyanide and the DCMU-insensitive silicomolybdate reduction are inhibited from 70–100%. The photosystem II donor reaction, diphenyl carbazide → indophenol, is also inhibited, indicating that the inhibition site comes after the Mn2+ site, and that the first Ca2+ effect noted (site II) is not on the water oxidation enzyme, as is commonly assumed, but between the Mn2+ site and plastoquinone A pool. The other photosystem II effect of EGTA (Ca2+ site I), occurs in the region between plastoquinone A and P700 in the electron transport chain of chloroplasts. About 50% inhibition of the reaction ascorbate + TMPD → methyl viologen is given by incubation with 200 μM EGTA for 15 min. Ca2+ site II activity can be restored with 20 mM CaCl2. Ca2+ site I responds to Ca2+ and plastocyanin added jointly. More than 90% activity in the ascorbate + TMPD → methylviologen reaction can be restored. Various ways in which Ca2+ ions could affect chloroplast structure and function are discussed. Since EGTA is more likely to penetrate chloroplast membranes than EDTA, which is known to remove CF1, the coupling factor, from chloroplast membranes, and since Mg2+ ions are ineffective in restoring activity, it is concluded that Ca2+ may function in the electron transport chain of chloroplasts in a hitherto unsuspected manner.  相似文献   

10.
The aim of the present study was to investigate the roles of Ca2+ and protein tyrosine kinase (PTK) in the insulin action on cell volume in fetal rat (20-day gestational age) type II pneumocytes. Insulin (100 nm) increased cell volume in the presence of extracellular Ca2+ (1 mm), while cell shrinkage was induced by insulin in the absence of extracellular Ca2+ (<1 nm). This insulin action in a Ca2+-containing solution was completely blocked by co-application of bumetanide (50 μm, an inhibitor of Na+/K+/2Cl cotransporter) and amiloride (10 μm, an inhibitor of epithelial Na+ channel), but not by the individual application of either bumetanide or amiloride. On the other hand, the insulin action on cell volume in a Ca2+-free solution was completely blocked by quinine (1 mm, a blocker of Ca2+-activated K+ channel), but not by bumetanide and/or amiloride. These observations suggest that insulin activates an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl cotransporter in the presence of 1 mm extracellular Ca2+, that the stimulatory action of insulin on an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl cotransporter requires Ca2+, and that in a Ca2+-free solution insulin activates a quinine-sensitive K+ channel but not in the presence of 1 mm Ca2+. The insulin action on cell volume in a Ca2+-free solution was almost completely blocked by treatment with BAPTA (10 μm) or thapsigargin (1 μM, an inhibitor of Ca2+-ATPase which depletes the intracellular Ca2+ pool). Further, lavendustin A (10 μm, an inhibitor of receptor type PTK) blocked the insulin action in a Ca2+-free solution. These observations suggest that the stimulatory action of insulin on a quinine-sensitive K+ channel is mediated through PTK activity in a cytosolic Ca2+-dependent manner. Lavendustin A, further, completely blocked the activity of the Na+/K+/2Cl cotransporter in a Ca2+-free solution, but only partially blocked the activity of the Na+/K+/2Cl cotransporter in the presence of 1 mm Ca2+. This observation suggests that the activity of the Na+/K+/2Cl cotransporter is maintained through two different pathways; one is a PTK-dependent, Ca2+-independent pathway and the other is a PTK-independent, Ca2+-dependent pathway. Further, we observed that removal of extracellular Ca2+ caused cell shrinkage by diminishing the activity of the amiloride-sensitive Na+ channel and the bumetanide-sensitive Na+/K+/2Cl cotransporter, and that removal of extracellular Ca2+ abolished the activity of the quinine-sensitive K+ channel. We conclude that the cell shrinkage induced by removal of extracellular Ca2+ results from diverse effects on the cotransporter and Na+ and K+ channels. Received: 2 September 1998/Revised: 30 November 1998  相似文献   

11.
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation–contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation–contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation–contraction coupling.  相似文献   

12.
L-type Ca2+ channel (VGCC) mediated Ca2+ influx in vascular smooth muscle cells (VSMC) contributes to the functional properties of large arteries in arterial stiffening and central blood pressure regulation. How this influx relates to steady-state contractions elicited by α1-adrenoreceptor stimulation and how it is modulated by small variations in resting membrane potential (Vm) of VSMC is not clear yet. Here, we show that α1-adrenoreceptor stimulation of aortic segments of C57Bl6 mice with phenylephrine (PE) causes phasic and tonic contractions. By studying the relationship between Ca2+ mobilisation and isometric tension, it was found that the phasic contraction was due to intracellular Ca2+ release and the tonic contraction determined by Ca2+ influx. The latter component involves both Ca2+ influx via VGCC and via non-selective cation channels (NSCC). Influx via VGCC occurs only within the window voltage range of the channel. Modulation of this window Ca2+ influx by small variations of the VSMC Vm causes substantial effects on the contractile performance of aortic segments. The relative contribution of VGCC and NSCC to the contraction by α1-adrenoceptor stimulation could be manipulated by increasing intracellular Ca2+ release from non-contractile sarcoplasmic reticulum Ca2+ stores. Results of this study point to a complex interactions between α1-adrenoceptor-mediated VSMC contractile performance and Ca2+ release form contractile or non-contractile Ca2+ stores with concomitant Ca2+ influx. Given the importance of VGCC and their blockers in arterial stiffening and hypertension, they further point toward an additional role of NSCC (and NSCC blockers) herein.  相似文献   

13.
Effects of salinity and turgor on calcium influx in Chara   总被引:2,自引:2,他引:0  
Measurements were made of the influx of 45Ca into internodal cells of Chara corallina in solutions containing high concentrations of NaCl. Increasing salinity in the range 4–100mol m?3 NaCl resulted in a doubling of Ca2+ influx at the plasmalemma. A time-course of Ca2+ influx in 50 mol m?3 NaCl, 0.5mol m?3 CaCl2 showed that while influx at the plasmalemma increased only 1.5-fold, influx to the vacuole increased by up to 15-fold. This was interpreted as being due to inhibition of active Ca2+ efflux from the cell. The stimulation of Ca2+ influx by increasing salinity appeared to be principally a response to reduced turgor since similar stimulations were obtained when turgor was reduced by NaCl, Na2SO4 or mannitol. When cells were plasmolysed Ca2+ influx increased by 10–20-fold. The increased permeability was relatively specific for Ca2+ and was inhibitable by La3+. Survival of cells in high salt conditions was increased by 30 mmol m?3 La3+, which inhibited Ca2+ influx. Paradoxically, survival can also be extended by increasing external Ca2+ which leads to a higher influx. Therefore, it seems unlikely that the ameliorative effect of Ca2+ on the sensitivity of plants to high NaCl is mediated by Ca2+ entry across the plasmalemma. It seems more likely that the principal role of Ca2+ under these conditions is exerted externally through the control of membrane voltage and permeability.  相似文献   

14.
The relationship between relative cell volume and time-dependent changes in intracellular Ca2+ concentration ([Ca2+] i ) during exposure to hypotonicity was characterized in SV-40 transformed rabbit corneal epithelial cells (tRCE) (i). Light scattering measurements revealed rapid initial swelling with subsequent 97% recovery of relative cell volume (characteristic time (τ vr ) was 5.9 min); (ii). Fura2-fluorescence single-cell imaging showed that [Ca2+] i initially rose by 216% in 30 sec with subsequent return to near baseline level after another 100 sec. Both relative cell volume recovery and [Ca2+] i transients were inhibited by either: (a) Ca2+-free medium; (b) 5 mm Ni2+ (inhibitor of plasmalemma Ca2+ influx); (c) 10 μm cyclopiazonic acid, CPA (which causes depletion of intracellular Ca2+ content); or (d) 100 μm ryanodine (inhibitor of Ca2+ release from intracellular stores). To determine the temporal relationship between an increased plasmalemma Ca2+ influx and the emptying of intracellular Ca2+ stores during the [Ca2+] i transients, Mn2+ quenching of fura2-fluorescence was quantified. In the presence of CPA, hypotonic challenge increased plasmalemma Mn2+ permeability 6-fold. However, Mn2+ permeability remained unchanged during exposure to either: 1.100 μm ryanodine; 2.10 μm CPA and 100 μm ryanodine. This report for the first time documents the time dependence of the components of the [Ca2+] i transient required for a regulatory volume decrease (RVD). The results show that ryanodine sensitive Ca2+ release from an intracellular store leads to a subsequent increase in plasmalemma Ca2+ influx, and that both are required for cells to undergo RVD. Received: 7 November 1996/Revised: 6 January 1997  相似文献   

15.
The effects of several co-factors and bivalent cations on the activity of prostaglandin synthetase isolated from goat seminal vesicles were studied. Ca2+ appears to play a regulatory role in the biosynthesis of prostaglandin E2 by goat vesicular microsomes as the normal parabolic time course of synthesis changed to a sigmoid curve in the presence of 4 mM Ca2+ and to nearly a hyperbolic pattern when the microsomes were preincubated with the metal ions. The Ca2+ modulated reaction showed increased rate of prostaglandin E2 synthesis only when the period of incubation was extended beyond 30 min. The co-factor requirement of the goat enzyme was similar to that of the bovine and ovine prostaglandin synthetase systems.  相似文献   

16.
Membrane-bound ATPase activities in chloroplasts of Euglena were examined. Ca2+- and Mg2+-dependent activities were relatively high in membrane preparations and could not be further activated by a number of procedures. The enzyme was found to be highly specific for purine nucleotides and was inhibited by the usual inhibitors of photophosphorylation. Km values of Ca2+ and Mg2+ ATPase for ATP were 2.5 and 2.1 mM, respectively. Both activities were competitively inhibited by ADP and inorganic phosphate. A relationship was found between Ca2+- or Mg2+-dependent ATPase activities and chloroplast completeness. The possibilities that these activities result from one enzyme depending on Ca2+ or Mg2+ or from two different enzymes are discussed.  相似文献   

17.
Voltage-gated calcium (CaV) channels deliver Ca2+ to trigger cellular functions ranging from cardiac muscle contraction to neurotransmitter release. The mechanism by which these channels select for Ca2+ over other cations is thought to involve multiple Ca2+-binding sites within the pore. Although the Ca2+ affinity and cation preference of these sites have been extensively investigated, the effect of voltage on these sites has not received the same attention. We used a neuronal preparation enriched for N-type calcium (CaV2.2) channels to investigate the effect of voltage on Ca2+ flux. We found that the EC50 for Ca2+ permeation increases from 13 mM at 0 mV to 240 mM at 60 mV, indicating that, during permeation, Ca2+ ions sense the electric field. These data were nicely reproduced using a three-binding-site step model. Using roscovitine to slow CaV2.2 channel deactivation, we extended these measurements to voltages <0 mV. Permeation was minimally affected at these hyperpolarized voltages, as was predicted by the model. As an independent test of voltage effects on permeation, we examined the Ca2+-Ba2+ anomalous mole fraction (MF) effect, which was both concentration and voltage dependent. However, the Ca2+-Ba2+ anomalous MF data could not be reproduced unless we added a fourth site to our model. Thus, Ca2+ permeation through CaV2.2 channels may require at least four Ca2+-binding sites. Finally, our results suggest that the high affinity of Ca2+ for the channel helps to enhance Ca2+ influx at depolarized voltages relative to other ions (e.g., Ba2+ or Na+), whereas the absence of voltage effects at negative potentials prevents Ca2+ from becoming a channel blocker. Both effects are needed to maximize Ca2+ influx over the voltages spanned by action potentials.  相似文献   

18.
2,3-Butanedione monoxime (BDM) is a chemical phosphatase and has been known to dissociate mechanical contraction in the excitation–contraction coupling via inhibition of myofibrillar ATPase. BDM has also been found to decrease sarcolemmal L-type Ca2+ channel activity and intracellular Ca2+ in cardiac myocytes. It has been shown that Ca2+ entry via L-type Ca2+ channels decreased atrial myocyte atrial natriuretic peptide (ANP) release. The purpose of the present study was to address the effects of BDM in the regulation of ANP release. Experiments were performed in perfused beating rabbit atria. BDM accentuated atrial myocyte ANP release concomitantly with a decrease in atrial stroke volume and pulse pressure in a concentration-dependent manner. The BDM-induced activation of ANP release was attenuated by the treatment with nifedipine, an inhibitor of L-type Ca2+ channels. BDM further decreased atrial stroke volume and pulse pressure in the presence of nifedipine. Blockade of function of the sarcoplasmic reticulum with thapsigargin plus ryanodine slightly but not significantly attenuated the BDM-induced activation of ANP release. These data show that BDM is a potent stimulator for the ANP release and also suggest that the mechanism by which BDM activates atrial myocyte ANP release is related to inhibition of the L-type Ca2+ channel activity. The present finding also suggests that the effects of ANP released may be considered in an occasion of uncoupling by BDM of the excitation–contraction coupling of cardiomyocytes.  相似文献   

19.
Two barley chloroplast nuclease fractions were separated by the affinity chromatography and gel electrophoresis. Both were about 2 times more active to RNA than to native DNA and about half as active to denaturated DNA as to native DNA. Both fractions were as active to UV-irradiated (270 J m-2) native DNA as to intact DNA but their action was inhibited by apurinic sites. The enzyme activities were inhibited by high concentrations of EDTA, NaCl, Mn2+, Ca2+, Zn2+ ions and by N-ethylmaleimide. They do not require Mg2+ ions but are stimulated or at higher concentration inhibited by their presence. Both RNase and DNase were active over a wide pH range (5.5–9), the optimum for DNase action in the presence of Mg2+ being 6.5, for RNA decomposing activity at pH 8.0. As no mononucleotides were detected in acid soluble form, it seems likely that DNase acts in the endonucleolytic way.  相似文献   

20.
M. Hauser 《Protoplasma》1980,102(1-2):53-62
Summary The addition of 2 mM-3 mM ATP to macronuclei ofParamecium bursaria suspended in a glycerol buffer medium causes a decrease in their volume up to 23% within 3 minutes. The infiltration medium must not only contain Ca2+, but must also be of low ionic strength for ATP to be effective. A slow, careful exchange of the glycerol medium for the contraction solution is also necessary. Ca2+ present alone in the standard contraction buffer can likewise induce a limited volume decrease; in the presence of low concentrations of Ca2+, Mg2+ shows no detectable effect on glycerinated nuclei. When the nuclear volume has been reduced by ATP in the presence of Ca2+, the addition of EGTA induces a reexpansion of the nuclei. Salyrgan, an organic mercurial, either prevents or abolishes the ATP-induced contraction. Other nucleotide triphosphates such as guanosine triphosphate (GTP), inosine triphosphate (ITP) or uridine triphosphate (UTP) likewise induce a volume decrease of the glycerinated macronuclei, but to a distinctly lesser extent than ATP.The results indicate that the volume decrease caused by the ATP-contraction solution is not a passive osmotic process. The resemblance to actomyosin contractions suggests that the volume decrease reported here might also be the result of the reaction of nuclear actomyosin and ATP.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号