首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
De novo LINE-1 (long interspersed element-1, or L1) retrotransposition events are responsible for approximately 1/1,000 disease-causing mutations in humans. Previously, L1.2 was identified as the likely progenitor of a mutagenic insertion in the factor VIII gene in a patient with hemophilia A. It subsequently was shown to be one of a small number of active L1s in the human genome. Here, we demonstrate that L1.2 is present at an intermediate insertion allele frequency in worldwide human populations and that common alleles (L1.2A and L1.2B) exhibit an approximately 16-fold difference in their ability to retrotranspose in cultured human HeLa cells. Chimera analysis revealed that two amino acid substitutions (S1259L and I1220M) downstream of the conserved cysteine-rich motif in L1 open reading frame 2 are largely responsible for the observed reduction in L1.2A retrotransposition efficiency. Thus, common L1 alleles can vary widely in their retrotransposition potential. We propose that such allelic heterogeneity can influence the potential L1 mutational load present in an individual genome.  相似文献   

2.
3.
4.
5.
LINE-1 transposable elements (L1s) are ubiquitous in mammals and are thought to have remained active since before the mammalian radiation. Only one L1 extinction event, in South American rodents in the genus Oryzomys, has been convincingly demonstrated. Here we examine the phylogenetic limits and evolutionary tempo of that extinction event by characterizing L1s in related rodents. Fourteen genera from five tribes within the Sigmodontinae subfamily were examined. Only the Sigmodontini, the most basal tribe in this group, demonstrate recent L1 activity. The Oryzomyini, Akodontini, Phyllotini, and Thomasomyini contain only L1s that appear to have inserted long ago; their L1s lack open reading frames, have mutations at conserved amino acid residues, and show numerous private mutations. They also lack restriction site-defined L1 subfamilies specific to any species, genus or tribe examined, and fail to form monophyletic species, genus or tribal L1 clusters. We determine here that this L1 extinction event occurred roughly 8.8 million years ago, near the divergence of Sigmodon from the remaining Sigmodontinae species. These species appear to be ideal model organisms for studying the impact of L1 inactivity on mammalian genomes.  相似文献   

6.
7.
Long interspersed nuclear elements (LINEs) comprise about 21% of the human genome (of which L1 is most abundant) and are preferentially accumulated in AT-rich regions, as well as the X and Y chromosomes. Most knowledge of L1 distribution in mammals is restricted to human and mouse. Here we report the first investigation of L1 distribution in the genomes of a wide variety of eutherian mammals, including species in the two basal clades, Afrotheria and Xenarthra. Our results show L1 accumulation on the X of all eutherian mammals, an observation consistent with an ancestral involvement of these elements in the X-inactivation process (the Lyon repeat hypothesis). Surprisingly, conspicuous accumulation of L1 in AT-rich regions of the genome was not observed in any species outside of Euarchontoglires (represented by human, mouse and rabbit). Although several features were common to most species investigated, our comprehensive survey shows that the patterns observed in human and mouse are, in many aspects, far from typical for all mammals. We discuss these findings with reference to models that have previously been proposed to explain the AT distribution bias of L1 in human and mouse, and how this relates to the evolution of these elements in other eutherian genomes.Paul D. Waters and Gauthier Dobigny contributed equally to this work  相似文献   

8.
Subfamily-specific LINE-1 PCR (SSL1-PCR) is the targeted amplification and cloning of defined subfamilies of LINE-1 elements and their flanking sequences. The targeting is accomplished by incorporating a subfamily-specific sequence difference at the 3 end of a LINE-1 PCR primer and pairing it with a primer to an anchor ligated within the flanking region. SSL1-PCR was demonstrated by targeting amplification of a Mus spretus-specific LINE-1 subfamily. The amplified fragments were cloned to make an SSL1-PCR library, which was found to be 100-fold enriched for the targeted elements. PCR primers were synthesized based on the sequence flanking the LINE-1 element of four different clones. Three of the clones were recovered from Mus spretus DNA. A fourth clone was recovered from a congenic mouse containing both Mus spretus and Mus domesticus DNA. Amplification between these flanking primers and LINE-1 PCR primers produced a product in Mus spretus and not in Mus domesticus. These dimorphisms were further verified to be due to insertion of Mus spretus-specific LINE-1 elements into Mus spretus DNA and not into Mus domesticus DNA.  相似文献   

9.
10.
Adaptive Evolution in LINE-1 Retrotransposons   总被引:9,自引:1,他引:8  
We traced the sequence evolution of the active lineage of LINE-1(L1) retrotransposons over the last  相似文献   

11.
12.
《Neuron》2022,110(20):3278-3287.e8
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

13.
The preTa subfamily of long interspersed elements (LINEs) is characterized by a three base-pair "ACG" sequence in the 3' untranslated region, contains approximately 400 members in the human genome, and has low level of nucleotide divergence with an estimated average age of 2.34 million years old suggesting that expansion of the L1 preTa subfamily occurred just after the divergence of humans and African apes. We have identified 362 preTa L1 elements from the draft human genomic sequence, investigated the genomic characteristics of preTa L1 insertions, and screened individual elements across diverse human populations and various non-human primate species using polymerase chain reaction (PCR) assays to determine the phylogenetic origin and levels of human genomic diversity associated with the L1 elements. All of the preTa L1 elements analyzed by PCR were absent from the orthologous positions in non-human primate genomes with 33 (14%) of the L1 elements being polymorphic with respect to insertion presence or absence in the human genome. The newly identified L1 insertion polymorphisms will prove useful as identical by descent genetic markers for the study of human population genetics. We provide evidence that preTa L1 elements show an integration site preference for genomic regions with low GC content. Computational analysis of the preTa L1 elements revealed that 29% of the elements amenable to complete sequence analysis have apparently escaped 5' truncation and are essentially full-length (approximately 6kb). In all, 29 have two intact open reading frames and may be capable of retrotransposition.  相似文献   

14.
LINE-1 (L1) lineages in the mouse   总被引:2,自引:0,他引:2  
Recently, a rapidly amplifying family of mouse LINE-1 (L1) has been identified and named T(F). The evolutionary context surrounding the derivation of the T(F) family was examined through phylogenetic analysis of sequences in the 3' portion of the repeat. The Mus musculus domesticus T(F) family was found to be the terminal subfamily of the previously identified L1Md4 lineage. The L1Md4 lineage joins the other prototypical mouse LINE-1 lineage (the L1MdA2 lineage) approximately 1 MYA at about the time of the common ancestor of M. m. domesticus, Mus spicilegus, and Mus spretus. However, the T(F) family from M. m. domesticus was found to join to the previously reported M. spretus Ms475 and Ms7024 LINE-1 families at just 0.5 MYA, indicating horizontal transfer. The T(F) family from M. m. domesticus was then found to be even more recently related to LINE-1's from another species, M. spicilegus. A separate spretus A2 lineage was found through a directed search of a PCR library. This lineage, in contrast to the spretus T(F) lineage, does join domesticus at about 1 MYA, as would be expected in the absence of horizontal transfer. A third major family was also found that splits off from the L1Md4 lineage shortly after its departure from the L1MdA2 lineage. The new family, named the Z family, was found to contain the de novo LINE-1 inserts causing the beige and med mutations. Whether the split with the Z family was before or after the recombination that introduced the F-type promoters and defined the inception of T(F) as a lineage is unclear. In enumerating copies of the various LINE-1 families, we found that T(F) 3' ends were not much more numerous than the reported number of 5' ends, suggesting that T(F) may not be subjected to the 90% truncation pattern typical of LINE-1 as a whole.  相似文献   

15.
16.
17.
In the bovine genome we found two intrachromosomal DNA fragments flanked by inverted telomeric repeats (GenBank Accession Nos. AF136741 and AF136742). The internal parts of the fragments are homologous exclusively to the human sequences and to the consensus sequence of the L1MC4 subfamily of LINE-1 retrotransposons which are widespread among mammalian genomes. We found that distribution of homologous human sequences within our fragments is not random, reflecting a complicated pattern of insertion mechanisms of and maintenance of retrotransposons in mammalian genomes. One of the possible explanations of the origin of LINE-1 truncated elements flanked by inverted telomeric repeats in the bovine genome is that extrachromosomal DNA fragments may be modified by telomerase and subsequently, transferred into chromosomal DNA.  相似文献   

18.
19.
Several LINE-1s have been isolated and characterized from genomic DNA of the vole, Microtus kirgisorum. Blot hybridization revealed specific restriction patterns of L1 elements in vole genomes. Rehybridization of the genomic blot with a cloned 5′-end fragment revealed two major bands indicating the presence of two different L1 subfamilies. The copy numbers are estimated for different parts of M. kirgisorum L1 elements. Data also demonstrate that most vole L1 elements are truncated at the 5′-end; however, in contrast to mouse, the ORF1 copy number is higher in vole. A difference between the substitution rates of the ORF1 5′-region (approximately 330 nucleotides) and the rest of the L1 coding regions is revealed. Received: 12 January, 1999 / Accepted: 18 March, 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号