首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tolaasin is a peptide toxin produced by Pseudomonas tolaasii and causes brown blotch disease of the cultivated mushrooms. Two types of ion channels were identified by the incorporation of tolaasin into lipid bilayer. The slope conductance of type 1 channel measured in the buffer containing 100 mM KCl was 150 pS with a linear current vs. voltage relationship. The type 2 tolaasin channel had two subconductance states of 300 and 500 pS. Both channels were inhibited by Zn(2+). Ion channel formations of tolaasin were concentration-dependent and single channel currents were successfully obtained at 0.6 unit tolaasin, 15.9 nM. The type 1 channel was obtained more frequently than the type 2 channel and the ratio of their appearance was approximately 4:1, respectively.  相似文献   

2.
Tolaasin, a pore-forming peptide toxin, is produced by Pseudomonas tolaasii and causes brown blotch disease of the cultivated mushrooms. P. tolaasii 6264 was isolated from the oyster mushroom damaged by the disease in Korean. In order to isolate tolaasin molecules, the supernatant of bacterial culture was harvested at the stationary phase of growth. Tolaasin was prepared by ammonium sulfate precipitation and three steps of chromatograpies, including a gel permeation and two ion exchange chromatographies. Specific hemolytic activity of tolaasin was increased from 1.7 to 162.0 HU mg(-1) protein, a 98-fold increase, and the purification yield was 16.3%. Tolaasin preparation obtained at each purification step was analyzed by HPLC and SDS-PAGE. Two major peptides were detected from all chromatographic preparations. Their molecular masses were analyzed by MALDI-TOF mass spectrometry and they were identified as tolaasin I and tolaasin II. These results demonstrate that the method used in this study is simple, time-saving, and successful for the preparation of tolaasin.  相似文献   

3.
A toxin produced by Pseudomonas tolaasii, tolaasin, causes brown blotch disease in mushrooms. Tolaasin forms pores on the cellular membrane and destroys cell structure. Inhibiting the ability of tolaasin to form ion channels may be an effective method to protect against attack by tolaasin. However, it is first necessary to elucidate the three-dimensional structure of the ion channels formed by tolaasin. In this study, the structure of the tolaasin ion channel was determined in silico based on data obtained from nuclear magnetic resonance experiments.  相似文献   

4.
Pseudomonas tolaasii, causing brown blotch disease on cultivated mushrooms, and yielding a white line precipitate towards P. “reactans”, has been shown to induce lysis of erythrocytes. Some Finnish strains isolated from diseased mushroom fruit bodies, although harboring the typical features of P. tolaasii, proved to be distinct, and have been allocated to a nov. sp. P. costantinii. We examined in these study whether all brown blotch causing agents were hemolytic. The induction of erythrocytes lysis seemed to be a rather common feature of mushroom associated-pseudomonads, especially for strains involved in the production of a white-line-in agar.  相似文献   

5.
Pseudomonas tolaasii, causing brown blotch disease on cultivated mushrooms, and yielding a white line precipitate towards P. “reactans”, has been shown to induce lysis of erythrocytes. Some Finnish strains isolated from diseased mushroom fruit bodies, although harboring the typical features of P. tolaasii, proved to be distinct, and have been allocated to a nov. sp. P. costantinii. We examined in these study whether all brown blotch causing agents were hemolytic. The induction of erythrocytes lysis seemed to be a rather common feature of mushroom associated-pseudomonads, especially for strains involved in the production of a white-line-in agar.  相似文献   

6.
Tolaasin, a pore‐forming peptide toxin produced by Pseudomonas tolaasii, causes brown blotch disease on cultivated mushrooms. Hemolysis using red blood cells was measured to evaluate the cytotoxicity of tolaasin. To investigate the mechanism of tolaasin‐induced cell disruption, we studied the effect of temperature on the hemolytic process. At 4 °C, poor binding of the tolaasin molecules to the erythrocyte membrane was observed and most of the tolaasin molecules stayed in the solution. However, once tolaasin bound to erythrocytes at 37 °C and the temperature was decreased, complete hemolysis was observed even at 4 °C. These results indicate that tolaasin binding to cell membrane is temperature‐sensitive while tolaasin‐induced membrane disruption is less sensitive to temperature change. The effect of erythrocyte concentration was measured to understand the membrane binding and pore‐forming properties of tolaasin. The percentage of hemolysis measured by both hemoglobin release and cell lysis decreased as erythrocyte concentration increased in the presence of a fixed amount of tolaasin. The result shows that hemolysis is dependent on the amount of tolaasin and multiple binding of tolaasin is required for the hemolysis of a single cell. In analysis of dose‐dependence, the hemolysis was proportional to the tenth power of the amount of tolaasin, implying that tolaasin‐induced hemolysis can be explained by a multi‐hit model. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Abstract A wide range of Agaricus bisporus , including commercial, wild and hybrid strains, were tested for resistance to brown blotch disease caused by Pseudomonas tolaasii . Effects of toxin and living bacteria were compared. Wild and hybrid A. bisporus ranged in the same order from very poorly to highly susceptible whatever the inoculum type used, tolaasin or bacteria. Symptom aspects induced by both inocula were visually identical, but some differences occurred in response intensity. The data suggest that toxin is probably not the only factor involved in symptom development.  相似文献   

8.
Ghasemi  Samira  Harighi  Behrouz  Mojarrab  Mahdi  Azizi  Abdolbaset 《BioControl》2021,66(3):421-432

Volatile organic compounds (VOCs) produced by bacteria have significant potential to control phytopathogens. In this study, the VOCs produced by endofungal bacteria Pseudomonas sp. Bi1, Bacillus sp. De3, Pantoea sp. Ma3 and Pseudomonas sp. De1 isolated from wild growing mushrooms were evaluated in vitro for their antagonistic activity against Pseudomonas tolaasii Pt18, the causal agent of mushroom brown blotch disease. The gas chromatography–mass spectrometry (GC–MS) analysis revealed that strains Pseudomonas sp. Bi1, Pseudomonas sp. De1, Bacillus sp. De3 and Pantoea sp. Ma3 produced eight, sixteen, nine, and twelve VOCs, respectively. All antagonistic endofungal bacteria produced VOCs which significantly reduced brown blotch symptoms on mushroom caps and inhibited the growth of P. tolaasii Pt18 at the varying levels. Scanning electron microscopy revealed severe morphological changes in cells of P. tolaasii Pt18 following exposure to the VOCs of Pseudomonas sp. Bi1 and De1. Furthermore, The VOCs produced by endofungal bacteria significantly reduced swarming, swimming, twitching, chemotaxis motility and biofilm formation by P. tolaasii Pt18 cells, which are essential contributors to pathogenicity. This is to first report about the inhibition effects of VOCs produced by antagonistic bacteria on virulence traits of P. tolaasii. Our findings provide new insights regarding the potential of antibacterial VOCs as a safe fumigant to control mushroom brown blotch disease.

  相似文献   

9.
The biological activities of the lipodepsipeptides (LDP) white line-inducing principle (WLIP), produced by Pseudomonas reactans NCPPB1311, and tolaasin I, produced by R tolaasii NCPPB2192, were compared. Antimicrobial assays showed that both LDP inhibited the growth of fungi-including the cultivated mushrooms Agaricus bisporus, Lentinus edodes, and Pleurotus spp.--chromista, and gram-positive bacteria. Assays of the two LDP on blocks of Agaricus bisporus showed their capacity to alter the mushrooms' pseudo-tissues though WLIP was less active than that of tolaasin I. Contrary to previous studies, tolaasin I was found to inhibit the growth of gram-negative bacteria belonging to the genera Escherichia, Erwinia, Agrobacterium, Pseudomonas, and Xanthomonas. The only gram-negative bacterium affected by WLIP was Erwinia carotovora subsp. carotovora. Both WLIP and tolaasin I caused red blood cell lysis through a colloid-osmotic shock mediated by transmembrane pores; however, the haemolytic activity of WLIP was greater than that of tolaasin I. Transmembrane pores, at a concentration corresponding to 1.5 x C50, showed a radius between 1.5 and 1.7 +/- 0.1 nm for WLIP and 2.1 +/- 0.1 nm for tolaasin I. The antifungal activity of WLIP together with the finding that avirulent morphological variants of P. reactans lack WLIP production suggests that WLIP may play an important role in the interaction of the producing bacterium P. reactans and cultivated mushrooms.  相似文献   

10.
Incidence of brown-discoloured mushrooms, differing from brown blotch disease caused by Pseudomonas tolaasii , has increased in the Netherlands and been responsible for considerable economic losses. A comparative SEM-study of diseased tissue revealed that hyphae were collapsed and covered with a plaque in which numerous bacteria were embedded. The predominant bacterium identified was Pseudomonas agarici. Both our isolated P. agarici strain and the type strain P. agarici LMG 2112 caused brown discolouration of mushrooms after spraying with bacterial suspensions. Drippy-gill symptoms were not observed.  相似文献   

11.
AIMS: To characterize a novel pseudomonad isolate capable of causing brown blotch disease of Agaricus bisporus. METHODS AND RESULTS: Using the white-line-in-agar (WLA) assay, fluorescent pseudomonads isolated from a New Zealand mushroom farm were screened for the lipodepsipeptide tolaasin, a characteristic marker of Pseudomonas tolaasii. One isolate, NZI7, produced a positive WLA assay and caused brown lesions of A. bisporus comparable with those produced by Ps. tolaasii. However, genetic analysis suggested that Ps. tolaasii and NZI7 were genetically dissimilar, and that NZI7 is closely related to Pseudomonas syringae. Nucleotide sequence analyses of a gene involved in tolaasin production indicated that similar genes are present in both NZI7 and Ps. tolaasii. CONCLUSION: NZI7 represents a novel Pseudomonas species capable of causing brown blotch disease of A. bisporus. SIGNIFICANCE AND IMPACT OF THE STUDY: Phenotypic identification of Ps. tolaasii based on A. bisporus browning and positive WLA may have limited specificity.  相似文献   

12.
Left handed alpha-helix formation by a bacterial peptide   总被引:2,自引:0,他引:2  
The alpha-helix is a common element of secondary structure in proteins and peptides. In eukaryotic organisms, which exclusively incorporate L-amino acids into such molecules, stereochemical interactions make such alpha-helices, invariably right-handed. Pseudomonas tolaasii Paine is the causal organism of the economically significant brown blotch disease of the cultivated mushroom Agaricus bisporus (Lange) Imbach. P. Tolaasii proceduces an extracellular lipodepsipeptide toxin, tolaasin, which causes the brown pitted lesions on the mushroom cap. Circular dichroism studies on tolaasin in a membrane-like environment indicate the presence of a left-handed alpha-helix, probably formed by a sequence of 7 D-amino acids in the peptide. P. tolaasii represents the first reported example of an organism which has evolved the ability to biosynthesize a left-handed alpha-helix.  相似文献   

13.
Wild and cultivated Basidiomycetes species were cultured to determine the distribution of bacteria causing brown blotch disease of Agaricus bisporus. Colonies from each basidiocarp were screened for brown blotch organisms by the white line and host pathogenicity tests. Isolates causing brown blotch were identified as Pseudomonas tolaasi and an Arthrobacter species.  相似文献   

14.
15.
The 18-amino acid cytolytic lipodepsipeptide tolaasin, produced in culture by virulent strains of Pseudomonas tolaasii, is the causal agent of the brown blotch disease of the cultivated mushroom. Tolaasin has a sequence of D-amino acids in its N-terminal region, then alternates L- and D-amino acids, and bears a C-terminal lactone macrocycle composed of 5-residues. The solution structure of tolaasin in sodium dodecyl sulfate was studied by 2D-NMR spectroscopy and molecular dynamics simulated annealing calculations. Tolaasin forms an amphipathic left-handed alpha-helix in the regionDPro2-DalloThr14 comprising the sequence of seven D-amino acids and the adjacent L-D-L-D-D-region. To the best of our knowledge, this is the first recognized example of a left-handed alpha-helix including both D- and L-amino acids. The lactone macrocycle adopts a "boat-like" conformation and is shifted from the helical axis as to form a "golf-club" overall conformation. These structural features will be of importance in understanding, and preventing, tolaasin's role in the bacterial colonization of the host plant, and its toxic action on cells. Furthermore, the observed antimicrobial activity together with the potential resistance to enzymatic degradation and the increased antigenicity (both due to the presence of L- and D-amino acids) strongly suggests for tolaasin a potential role as a template model for the design of new therapeutic antibacterial molecules.  相似文献   

16.
Hitoshi Murata 《Mycoscience》1999,40(4):353-358
Pseudomonas tolaasii strain PT 814 causes brown blotch disease in cultivated mushrooms. A pleiotropic avirulent mutant was isolated by mini-Tn5km 1 insertion mutagenesis. The insertion was localized in an open reading frame (ORF) predicted to encodesn-glycerol-3-phosphate dehydrogenase (glpD). ORFs that should encode its regulator, kinase, and facilitator were also identified as theglp gene cluster in the bacterium. The data suggest that theglp system may contribute to the ecology of this pathogen.  相似文献   

17.
A total of 103 isolates of basidiomycetes, representing 84 species from different Brazilian ecosystems, were evaluated for their antifungal and antibacterial activity in a panel of pathogenic and non-pathogenic microorganisms. Tissue plugs of the fruiting bodies were cultivated in liquid media and the whole culture extracted with ethyl acetate. Crude extracts from Agaricus cf. nigrecentulus, Agrocybe perfecta, Climacodon pulcherrimus, Gloeoporus thelephoroides, Hexagonia hydnoides, Irpex lacteus, Leucoagaricus cf. cinereus, Marasmius cf. bellus, Marasmius sp., Nothopanus hygrophanus, Oudemansiella canarii, Pycnoporus sanguineus, Phellinus sp., and Tyromyces duracinus presented significant activity against one or more of the target microorganisms. Eight isolates were active only against bacteria while three inhibited exclusively the growth of fungi. Two extracts presented wide antimicrobial spectrum and were active against both fungi and bacteria. Differences in the bioactivity of extracts obtained from isolates from the same species were observed.  相似文献   

18.
Bacteria were isolated from the mycelial surface of Pleurotus ostreatus and their role in fruiting body induction (fructification) of the edible mushroom P. ostreatus was investigated. Analysis of the bacterial community that colonized the mycelium showed that the species composition and numbers of culturable bacteria differed according to the developmental stage of P. ostreatus. In particular, the population size of fluorescent pseudomonads increased during fruiting body induction. An experiment showed that inoculation of pure cultures of the mycelium with strains of fluorescent Pseudomonas spp. isolated from the mycelial plane of commercially produced mushrooms promoted the formation of primordia and enhanced the development of the basidiome of P. ostreatus. Results of this research strongly suggest that inoculation of the mycelium with specific bacteria may have beneficial applications for mushroom production.  相似文献   

19.
Unpretreated spent beer grains were successfully used as a basic substrate material for the cultivation of Pleurotus ostreatus. The effects of spent grain types, additives, substrate moisture content, and substrate packing density on the yield and nutrition of fruit bodies were investigated. The cultivation results showed that few fruit bodies were formed on spent grain alone; however, a significantly high biological efficiency (19.1%) was obtained with the addition of wheat bran to (45%). The chemical analysis of fruit bodies indicated that P. ostreatus cultivated on spent grain substrate had a higher nutritional value than those grown on other reported types of substrates. The total amino acid content in the fruit bodies was 347.5 mg/g dry matter, and the crude protein content was as high as 53.3% on a dry weight basis. It was also found that the cultivation of P. ostreatus increased the crude protein content, while it decreased the ratio of lignin to cellulose, of the spent grain substrate.  相似文献   

20.
Sixteen representative isolates of Pseudomonas tolaasii, the causal agent of brown blotch of the cultivated mushroom Agaricus bisporus, were previously assigned to two siderovars (sv1 and sv2) on the basis of pyoverdines synthesized. Each isolate was pathogenic and produced a typical white line precipitate when cultured adjacent to Pseudomonas "reactans" strain LMG 5329. These 16 isolates of P. tolaasii, representing sv1 and sv2, were further characterized using genotypic methods to examine the relationships between the isolates. Rep-PCR studies revealed two distinct patterns from these isolates, which were consistent with the siderovar grouping. Ribotyping differentiated P. tolaasii LMG 2342T (sv1) and PS 3a (sv2) into two distinct ribotypes. A pair of primers, targeted to a 2.1-kb fragment of tl1 (encoding a tolaasin peptide synthetase), yielded the same PCR product from P. tolaasii LMG 2342T (sv1) and PS 22.2 (sv1), but not from PS 3a (sv2). Southern blot analysis indicated that homologues of tl1 are present in PS 3a, but the pattern of hybridization differed from PS 22.2 and LMG 2342T. Sequence determination and analysis of the internally transcribed spacer region ITSI for P. tolaasii LMG 2342T, LMG 6641, and PS 3a strains further supported the presence of the two siderovars. It is concluded that considerable genotypic differences exist among Finnish isolates of P. tolaasii causing brown blotch disease on the cultivated mushroom, which is in agreement with the phenotypic diversity highlighted through previous siderotyping studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号