首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re‐investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes’ individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9‐kb deletion spanning exons 10–13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses.  相似文献   

3.
We have examined the phenotype of different KIT genotypes with regard to coat colour and several blood parameters (erythrocyte numbers and measures, total and differential leucocyte numbers, haematocrit and haemoglobin levels and serum components). The effect of two different iron supplement regimes (one or two iron injections) on the blood parameters was also examined. For a total of 184 cross-bred piglets (different combinations of Hampshire, Landrace and Yorkshire) blood parameters were measured four times during their first month of life, and the KIT genotypes of these and 70 additional cross-bred piglets were determined. Eight different KIT genotypes were identified, which confirms the large allelic diversity at the KIT locus in commercial pig populations. The results showed that pigs with different KIT genotypes differ both in coat colour and in haematological parameters. In general, homozygous Dominant white (I/I) piglets had larger erythrocytes with lower haemoglobin concentration, indicating a mild macrocytic anaemia. The effect of two compared with one iron injection was also most pronounced for the I/I piglets.  相似文献   

4.
Grey horses are born coloured, turn progressively grey and often develop melanomas late in life. Grey shows an autosomal dominant inheritance and the locus has previously been mapped to horse chromosome 25 (ECA25), around the TXN gene. We have now developed eight new single nucleotide polymorphisms (SNPs) associated with genes on ECA25 using information on the linear order of genes on human chromosome 9q, as well as the human and mouse coding sequences. These SNPs were mapped in relation to the Grey locus using more than 300 progeny from matings between two Swedish Warmblood grey stallions and non-grey mares. Grey was firmly assigned to an interval with flanking markers NANS and ABCA1. This corresponds to a region of approximately 6.9 Mb on human chromosome 9q. Furthermore, no recombination was observed between Grey, TGFBR1 and TMEFF1, the last two being 1.4 Mb apart in human. There are no obvious candidate genes in this region and none of the genes has been associated with pigmentation disorders or melanoma development, suggesting that the grey phenotype is caused by a mutation in a novel gene.  相似文献   

5.
A PCR-RFLP for KIT associated with tobiano spotting pattern in horses   总被引:5,自引:0,他引:5  
An MspI polymorphism was identified in intron 13 of the equine homologue of proto-oncogene c-kit (KIT) by comparing DNA sequences from horses with solid coat colour and horses homozygous for the tobiano spotting (To) gene. The allele associated with solid coat colour was designated KM0, while the allele associated with the tobiano pattern created an additional MspI restriction site and was designated KM1. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) studies using DNA from hair follicles demonstrated that all 129 of 129 tobiano patterned horses possessed the KM1 allele. However, three of 104 solid-coloured thoroughbred horses also possessed the KM1 allele. Therefore, while KM1 is strongly associated with the gene for To, the association is not absolute. However, this test appears more efficacious to identify putative homozygotes for To than current biochemical testing methods using albumin (Alb) and vitamin D binding protein (Gc) haplotypes.  相似文献   

6.
The appaloosa coat colour pattern of the horse is similar to that caused by the rump-white (Rw) gene in the mouse. In the mouse Rw colour pattern is the result of an inversion involving the proto-oncogene c-kit (KIT). Therefore, we investigated KIT as a candidate gene that encodes the appaloosa coat colour gene (Lp) in horses. KIT plays a critical role in haematopoiesis, gametogenesis, and melanogenesis and encodes a transmembrane tyrosine kinase receptor that belongs to the PDGF/CSF-1/c-KIT receptor subfamily. Half-sib families segregating for Lp were uninformative for a reported polymorphism in KIT. However, KIT is located on horse chromosome 3 close to albumin (ALB), serum carboxylesterase (ES), vitamin D-binding protein (GC) and microsatellite markers ASB23, LEX007, LEX57, and UCDEQ437. Indeed, KIT and ASB23 were localized to ECA3q21-22.1 and 3q22.1-22.3, respectively, by fluorescent in situ hybridization. Family studies were conducted to investigate linkage of Lp to these markers using eight half-sib families in which Appaloosa stallions were mated to solid coloured mares. Linkage of Lp to the chromosome region containing ES, ALB, GC, ASB23, UCDEQ437, LEX57, and LEX007 was investigated by a multipoint linkage analysis using the computer program GENEHUNTER. LOD scores over the interval under investigation ranged from -4.28 to -12.48, with a score of -12.48 at the location for ASB23. Therefore, it was concluded that appaloosa (Lp) is not linked to any of the tested markers on ECA3, and thus Lp is unlikely to be the product of KIT.  相似文献   

7.
White spotting phenotypes in horses may be caused by developmental alterations impairing melanoblast differentiation, survival, migration and/or proliferation. Candidate genes for white‐spotting phenotypes in horses include EDNRB, KIT, MITF, PAX3 and TRPM1. We investigated a German Riding Pony with a sabino‐like phenotype involving extensive white spots on the body together with large white markings on the head and almost completely white legs. We obtained whole genome sequence data from this horse. The analysis revealed a heterozygous 1273‐bp deletion spanning parts of intron 2 and exon 3 of the equine KIT gene (Chr3: 79 579 925–79 581 197). We confirmed the breakpoints of the deletion by PCR and Sanger sequencing. Knowledge of the functional impact of similar KIT variants in horses and other species suggests that this deletion represents a plausible candidate causative variant for the white‐spotting phenotype. We propose the designation W28 for the mutant allele.  相似文献   

8.
In horses, a pigment dilution acting only on black eumelanin is the so-called silver coat colour, which is characterized by a chocolate-to-reddish body with a white mane and tail. Using information from other species, we focused our study on SILV as a possible candidate gene for the equine silver phenotype. A 1559-bp genomic fragment was sequenced in 24 horses, and five SNPs were detected. Two of the five SNPs (DQ665301:g.697A>T and DQ665301:g.1457C>T) were genotyped in 112 horses representing eight colour phenotypes. Both mutations were completely associated with the silver phenotype: all eumelanin-producing horses (blacks and bays) with atypical white mane and tail were carriers of the [g.697T; g.1457T] haplotype. We identified this haplotype as well as the silver phenotype only in Shetland ponies and Icelandic horses. Horses without eumelanin (chestnuts) were carriers of the [g.697T; g.1457T] haplotype, but they showed no phenotypic effect. The white or flaxen mane often detected in chestnuts is presumably based on another SILV mutation or on polymorphisms in other genes.  相似文献   

9.
Variants in the EDNRB, KIT, MITF, PAX3 and TRPM1 genes are known to cause white spotting phenotypes in horses, which can range from the common white markings up to completely white horses. In this study, we investigated these candidate genes in 169 horses with white spotting phenotypes not explained by the previously described variants. We identified a novel missense variant, PAX3:p.Pro32Arg, in Appaloosa horses with a splashed white phenotype in addition to their leopard complex spotting patterns. We also found three novel variants in the KIT gene. The splice site variant c.1346+1G>A occurred in a Swiss Warmblood horse with a pronounced depigmentation phenotype. The missense variant p.Tyr441Cys was present in several part‐bred Arabians with sabino‐like depigmentation phenotypes. Finally, we provide evidence suggesting that the common and widely distributed KIT:p.Arg682His variant has a very subtle white‐increasing effect, which is much less pronounced than the effect of the other described KIT variants. We termed the new KIT variants W18–W20 to provide a simple and unambiguous nomenclature for future genetic testing applications.  相似文献   

10.
Mutations in the porcine KIT gene (Dominant white locus) have been shown to affect coat colours and colour distribution in pigs. We analysed this gene in several pig breeds and populations (Sicilian black, completely black or with white patches; Cinta Senese; grey local population; Large White; Duroc; Hampshire; Pietrain; wild boar; Meishan) with different coat colours and patterns, genotyping a few polymorphisms. The 21 exons and parts of the intronic regions were sequenced in these pigs and 69 polymorphisms were identified. The grey-roan coat colour observed in a local grey population was completely associated with a 4-bp deletion of intron 18 in a single copy KIT gene, providing evidence that this mutation characterizes the Id allele described in the early genetic literature. The white patches observed in black Sicilian pigs were not completely associated with the presence of a duplicated KIT allele (Ip), suggesting that genetic heterogeneity is a possible cause of different coat colours in this breed. Selection signature was evident at the KIT gene in two different belted pig breeds, Hampshire and Cinta Senese. The same mutation(s) may cause the belted phenotype in these breeds that originated in the 18th–19th centuries from English pigs (Hampshire) and in Tuscany (Italy) in the 14th century (Cinta Senese). Phylogenetic relationships of 28 inferred KIT haplotypes indicated two clades: one of Asian origin that included Meishan and a few Sicilian black haplotypes and another of European origin.  相似文献   

11.
The dominant grey coat colour gene of horses has been mapped using a whole genome scanning approach. Samples from a large half-sibling pedigree of Thoroughbred horses were utilized in order to map the grey coat colour locus, G. Multiplex groups of microsatellite markers were developed and used to efficiently screen the horse genome at a resolution of approximately 22 cM, based on an estimated map length for the horse genome of 2720 cM. The grey gene was assigned to chromosome 25 (ECA25), one of the smaller acrocentric horse chromosomes. Based on the current state of knowledge of conserved synteny and coat colour genetics in other mammalian species, there are no obvious candidate genes for the grey gene in the region.  相似文献   

12.
The progressive loss of colour in the hair of grey horses is controlled by a dominantly inherited allele at the Grey locus (GG). In this study, two paternal Quarter Horse (QH) families segregating for the GG allele were genotyped with a set of 101 microsatellite markers spanning the 31 autosomes and the X chromosome. This genome scan demonstrated linkage of Grey to COR018 (RF=0.02, LOD=12.04) on horse chromosome 25 (ECA25). Further chromosome-specific analysis of seven total QH families confirmed the linkage of Grey to a group of ECA25 markers and the map order of NVHEQ43-(0.24)-UCDEQ405-(0.09)-COR080-(0.05)-GREY-(0.14)-UCDEQ464 was produced. Although G was found to be linked to TXN and COR018 in the chromosome-specific analysis, the data were not sufficiently informative to place either marker on our ECA25 map with significant LODs. Our results excluded the equine tyrosinase related protein 1 (TYRP1) and melanocyte protein 17 (Pmel17) genes as possible candidates for the grey phenotype in horses.  相似文献   

13.
Haase B  Jude R  Brooks SA  Leeb T 《Animal genetics》2008,39(3):306-309
The tobiano white-spotting pattern is one of several known depigmentation phenotypes in horses and is desired by many horse breeders and owners. The tobiano spotting phenotype is inherited as an autosomal dominant trait. Horses that are heterozygous or homozygous for the tobiano allele ( To ) are phenotypically indistinguishable. A SNP associated with To had previously been identified in intron 13 of the equine KIT gene and was used for an indirect gene test. The test was useful in several horse breeds. However, genotyping this sequence variant in the Lewitzer horse breed revealed that 14% of horses with the tobiano pattern did not show the polymorphism in intron 13 and consequently the test was not useful to identify putative homozygotes for To within this breed. Speculations were raised that an independent mutation might cause the tobiano spotting pattern in this breed. Recently, the putative causative mutation for To was described as a large chromosomal inversion on equine chromosome 3. One of the inversion breakpoints is approximately 70 kb downstream of the KIT gene and probably disrupts a regulatory element of the KIT gene. We obtained genotypes for the intron 13 SNP and the chromosomal inversion for 204 tobiano spotted horses and 24 control animals of several breeds. The genotyping data confirmed that the chromosomal inversion was perfectly associated with the To allele in all investigated horses. Therefore, the new test is suitable to discriminate heterozygous To/+ and homozygous To/To horses in the investigated breeds.  相似文献   

14.
Kit ligand (KITLG) is the ligand for the type III receptor tyrosine kinase KIT. Studies of the KIT/KITLG pathway in a number of mammalian species have shown that it is important for the development of stem cell populations in haematopoietic tissues, germ cells in reproductive organs and the embryonic migrating melanoblasts that give rise to melanocytes. Consequently, mutations in the pathway may result in a range of defects including anaemia, sterility and de-pigmentation. The cDNA sequence of the porcine KITLG gene has been reported previously, and is an attractive candidate locus for moderating coat colour in pigs. In this paper we report the gene structure and physical mapping of the porcine gene. We also report the identification of polymorphisms in the gene, one of which was used to confirm linkage to chromosome 5. Preliminary RNA expression studies using a panel of tissues have shown that in addition to the known variant lacking exon 6, there is alternative splicing of exon 4. However, little evidence was found for the KITLG gene being linked to variation in colour in a Meishan x Large White cross.  相似文献   

15.
White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white‐born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white‐born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid‐coloured controls. To the authors’ knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.  相似文献   

16.
In horses, basic colours such as bay or chestnut may be partially diluted to buckskin and palomino, or extremely diluted to cream, a nearly white colour with pink skin and blue eyes. This dilution is expected to be controlled by one gene and we used both candidate gene and positional cloning strategies to identify the "cream mutation". A horse panel including reference colours was established and typed for different markers within or in the neighbourhood of two candidate genes. Our data suggest that the causal mutation, a G to A transition, is localised in exon 2 of the MATP gene leading to an aspartic acid to asparagine substitution in the encoded protein. This conserved mutation was also described in mice and humans, but not in medaka.  相似文献   

17.
White spotting phenotypes in horses are highly valued in some breeds. They are quite variable and may range from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for white spotting phenotypes in horses. For the present study, we investigated an American Paint Horse family segregating a phenotype involving white spotting and blue eyes. Six of eight horses with the white‐spotting phenotype were deaf. We obtained whole‐genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~63‐kb deletion spanning exons 6–9 of the MITF gene (chr16:21 503 211–21 566 617). We confirmed the breakpoints of the deletion by PCR and Sanger sequencing. PCR‐based genotyping revealed that all eight available affected horses from the family carried the deletion. The finding of an MITF variant fits well with the syndromic phenotype involving both depigmentation and an increased risk for deafness and corresponds to human Waardenburg syndrome type 2A. Our findings will enable more precise genetic testing for depigmentation phenotypes in horses.  相似文献   

18.
Gene frequencies of coat colour and horn types were assessed in 22 Nordic cattle breeds in a project aimed at establishing genetic profiles of the breeds under study. The coat colour loci yielding information on genetic variation were: extension, agouti, spotting, brindle, dun dilution and colour sided. The polled locus was assessed for two alleles. A profound variation between breeds was observed in the frequencies of both colour and horn alleles, with the older breeds generally showing greater variation in observed colour, horn types and segregating alleles than the modern breeds. The correspondence between the present genetic distance matrix and previous molecular marker distance matrices was low (r = 0.08 – 0.12). The branching pattern of a neighbour-joining tree disagreed to some extent with the molecular data structure. The current data indicates that 70% of the total genetic variation could be explained by differences between the breeds, suggesting a much greater breed differentiation than typically found at protein and microsatellite loci. The marked differentiation of the cattle breeds and observed disagreements with the results from the previous molecular data in the topology of the phylogenetic trees are most likely a result of selection on phenotypic characters analysed in this study.  相似文献   

19.
A method to quantify the contribution of subpopulations to genetic diversity in the whole population was assessed using pedigree information. The standardization of between- and within-subpopulation mean coancestries was developed to account for the different coat colour subpopulation sizes in the Spanish Purebred (SPB) horse population. The data included 166264 horses registered in the SPB Studbook. Animals born in the past 11 years (1996 to 2006) were selected as the 'reference population' and were grouped according to coat colour into eight subpopulations: grey (64 836 animals), bay (33 633), black (9414), chestnut (1243), buckskin (433), roan (107), isabella (57) and white (37). Contributions to the total genetic diversity were first assessed in the existing subpopulations and later compared with two scenarios with equal subpopulation size, one with the mean population size (13 710) and another with a low population size (100). Ancestor analysis revealed a very similar origin for the different groups, except for six ancestors that were only present in one of the groups likely to be responsible for the corresponding colour. The coancestry matrix showed a close genetic relationship between the bay and chestnut subpopulations. Before adjustment, Nei's minimum distance showed a lack of differentiation among subpopulations (particularly among the black, chestnut and bay subpopulations) except for isabella and white individuals, whereas after adjustment, white, roan and grey individuals appeared less differentiated. Standardization showed that balancing coat colours would contribute preserving the genetic diversity of the breed. The global genetic diversity increased by 12.5% when the subpopulations were size standardized, showing that a progressive increase in minority coats would be profitable for the genetic diversity of this breed. The methodology developed could be useful for the study of the genetic structure of subpopulations with unbalanced sizes and to predict their genetic importance in terms of their contribution to genetic variability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号