首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The filamentous fungus T. reesei effectively degrades cellulose and is known to produce various cellulolytic enzymes such as β-glucosidase, endoglucanase, and cellobiohydrolase. The expression levels of each cellulase are controlled simultaneously, and their ratios and synergetic effects are important for effective cellulose degradation. However, in recombinant Saccharomyces cerevisiae, it is difficult to simultaneously control many different enzymes. To construct engineered yeast with efficient cellulose degradation, we developed a simple method to optimize cellulase expression levels, named cocktail δ-integration.  相似文献   

2.

Background  

The cellulose synthase and cellulose synthase-like gene superfamily (CESA/CSL) is proposed to encode enzymes for cellulose and non-cellulosic matrix polysaccharide synthesis in plants. Although the rice (Oryza sativa L.) genome has been sequenced for a few years, the global expression profiling patterns and functions of the OsCESA/CSL superfamily remain largely unknown.  相似文献   

3.

Background  

Microorganisms possess diverse metabolic capabilities that can potentially be leveraged for efficient production of biofuels. Clostridium thermocellum (ATCC 27405) is a thermophilic anaerobe that is both cellulolytic and ethanologenic, meaning that it can directly use the plant sugar, cellulose, and biochemically convert it to ethanol. A major challenge in using microorganisms for chemical production is the need to modify the organism to increase production efficiency. The process of properly engineering an organism is typically arduous.  相似文献   

4.

Aims

The objective was to determine the effect of the isoflavone biochanin A (BCA) on rumen cellulolytic bacteria and consequent fermentative activity.

Methods and Results

When bovine microbial rumen cell suspensions (n = 3) were incubated (24 h, 39°C) with ground hay, cellulolytic bacteria proliferated, short‐chain fatty acids were produced and pH declined. BCA (30 μg ml?1) had no effect on the number of cellulolytic bacteria or pH, but increased acetate, propionate and total SCFA production. Addition of BCA improved total digestibility when cell suspensions (n = 3) were incubated (48 h, 39°C) with ground hay, Avicel, or filter paper. Fibrobacter succinogenes S85, Ruminococcus flavefaciens 8 and Ruminococcus albus 8 were directly inhibited by BCA. Synergistic antimicrobial activity was observed with BCA and heat killed cultures of cellulolytic bacteria, but the effects were species dependent.

Conclusions

These results indicate that BCA improves fibre degradation by influencing cellulolytic bacteria competition and guild composition.

Significance and Impact of the Study

BCA could serve as a feed additive to improve cellulosis when cattle are consuming high‐fibre diets. Future research is needed to evaluate the effect of BCA on fibre degradation and utilization in vivo.  相似文献   

5.
Saratale GD  Oh SE 《Biodegradation》2011,22(5):905-919
A novel cellulolytic bacterium was isolated from the forest soil of KNU University campus. Through 16S rRNA sequence matching and morphological observation it was identified as Nocardiopsis sp. KNU. This strain can utilize a broad range of cellulosic substrates including: carboxymethyl cellulose (CMC), avicel, xylan, cellobiose, filter paper and rice straw by producing a large amount of thermoalkalotolerant endoglucanase, exoglucanase, xylanase and glucoamylase. Optimal culture conditions (Dubos medium, 37°C, pH 6.5 and static condition) for the maximal production of the cellulolytic enzymes were determined. The activity of cellulolytic and hemicelluloytic enzymes produced by this strain was mainly present extracellularly and the enzyme production was dependent on the cellulosic substrates used for the growth. Effect of physicochemical conditions and metal additives on the cellulolytic enzymes production were systematically investigated. The cellulases produced by Nocardiopsis sp. KNU have an optimal temperature of 40°C and pH of 5.0. These cellulases also have high thermotolerance as evidenced by retaining 55–70% activity at 80°C and pH of 5.0 and alkalotolerance by retaining >55% of the activity at pH 10 and 40°C after 1 h. The efficiency of fermentative conversion of the hydrolyzed rice straw by Saccharomyces cerevisiae (KCTC-7296) resulted in 64% of theoretical ethanol yield.  相似文献   

6.
To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification–fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 °C and 37 °C, while the activity of cellulolytic enzymes is highest at around 50 °C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus β-glucosidase on the cell surface, which successfully converts a cellulosic β-glucan to ethanol directly at 48 °C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of β-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface.  相似文献   

7.
This is the first report of isolation of fungi present in fatty and defatted castor bean meal as well as the first of crop’s selection to test the cellulolytic potential, in order to verify the diversity and potential of cellulolytic fungi in castor bean waste (Ricinus communis L.). For the screening on solid medium, it was used carboxymethylcellulose (CMC) as the sole carbon source. The microcrystalline cellulose (Avicel) was used as a substrate for submerged fermentation for production of cellobiohydrolase (FPase) and the CMC to produce endoglucanases (CMCase) and β-glycosidases (BG). 189 cultures of fungi were isolated, including 40 species of filamentous fungi and three yeasts. The Aspergillus was the most frequent found genus. Regarding the distribution of isolated species from defatted castor bean meal, the A. niger was the most frequent one; and within the fatty castor bean meal, the Emericela variecolor prevailed among other species. Among the 67 fungal cultures tested in the initial screening on solid media to assess the cellulolytic potential, 54 disclosed Cellulolytic Index (CI) ranging from 1.04 to 6.00 mm. The isolates were selected for enzyme production in liquid medium with values above 2.0 CI. They were obtained with A. japonicus URM5620 FPase activity (4.99 U/ml) and BG (0.05 U/ml), and Rhodotorula glutinis URM5724 activity of CMCase 3.58 U/ml. These cases occurred after 168 h of submersion for both species of fungi. In our study, we could conclude that the castor bean is a promising source of fungi capable of producing cellulolytic enzymes.  相似文献   

8.
Catfishes of the genus Panaque are known for their ability to feed on wood and hence to process cellulose fibres in their digestive systems. The paper industry uses cellulose fibres and thus has an interest in exploiting this property biomimetically: it could be employed as a pretreatment to lessen the energy required by the mechanical production stage of manufacturing nanocellulose fibres. Here, we characterize the diet‐associated in situ microbial diversity and population dynamic in the faeces of catfish (Panaque sp.) exposed to consecutive diets of pellet food and then wood. Fish faeces samples were collected and investigated by parallel DNA deep amplicon sequencing of the bacterial 16S rRNA SSU for both diet conditions. The most frequently occurring bacterium in the faeces was Cetobacterium sp. The dominant cellulolytic bacterial genera found in ascending relative abundance were as follows: Aeromonas sp., Flavobacterium sp., Bacteroides sp., Pseudomonas sp. and Cellvibrio sp. Diet‐associated changes in the faeces microbiome were noted for Flavobacterium sp. Extensive microbial diversity was found in catfish faeces, evidenced using culture‐independent molecular techniques. No significant diet‐associated effects on the microbiome in terms of biodiversity were observed in the catfish faeces, but diet‐associated changes in the microbial population structure were observed.

Significance and Impact of the Study

Although catfishes are not classified as true xylivores, inhabiting their faeces are bacteria that may provide a novel source of cellulolytic enzyme. Based on this first microbiology study, the faeces and thus the gastrointestinal microbiome of Panaque catfishes are an unexplored reservoir of microbial extracts with enhanced polysaccharide transforming enzyme activity. The biomimetical exploitation of this cellulolytic activity in the form of novel enzymes or by applying a mixture of cellulolytic micro‐organisms could accomplish a pretreatment to the mechanical production process of nanocellulose fibres, thus could reduce the energy consumption costs significantly.  相似文献   

9.

Background  

The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes.  相似文献   

10.
Family 48 glycoside hydrolases (cellobiohydrolases) are among the most important cellulase components for crystalline cellulose hydrolysis mediated by cellulolytic bacteria. Open reading frame (Cphy_3368) of Clostridium phytofermentans ISDg encodes a putative family 48 glycoside hydrolase (CpCel48) with a family 3 cellulose-binding module. CpCel48 was successfully expressed as two soluble intracellular forms with or without a C-terminal His-tag in Escherichia coli and as a secretory active form in Bacillus subtilis. It was found that calcium ion enhanced activity and thermostability of the enzyme. CpCel48 had high activities of 15.1 U μmol−1 on Avicel and 35.9 U μmol−1 on regenerated amorphous cellulose (RAC) with cellobiose as a main product and cellotriose and cellotetraose as by-products. By contrast, it had very weak activities on soluble cellulose derivatives (e.g., carboxymethyl cellulose (CMC)) and did not significantly decrease the viscosity of the CMC solution. Cellotetraose was the smallest oligosaccharide substrate for CpCel48. Since processivity is a key characteristic for cellobiohydrolases, the new initial false/right attack model was developed for estimation of processivity by considering the enzyme's substrate specificity, the crystalline structure of homologous Cel48 enzymes, and the configuration of cellulose chains. The processivities of CpCel48 on Avicel and RAC were estimated to be ∼3.5 and 6.0, respectively. Heterologous expression of secretory active cellobiohydrolase in B. subtilis is an important step for developing recombinant cellulolytic B. subtilis strains for low-cost production of advanced biofuels from cellulosic materials in a single step.  相似文献   

11.
12.
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 °C at 70–80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 °C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.  相似文献   

13.

Background  

Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields.  相似文献   

14.

Background  

The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides.  相似文献   

15.
16.

Background  

Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit.  相似文献   

17.
This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H2SO4 with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, β-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 23 central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19–4.81%, w/w) and loadings of enzymes (1.9–38.1 FPU/g bagasse) and Tween 20 (0.0–0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.  相似文献   

18.
19.

Background  

Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments.  相似文献   

20.
Four anaerobic fungi were grown on filter paper cellulose and monitored over a 7–8 days period for substrate utilisation, fermentation products, and secretion of cellulolytic and xylanolytic enzymes. Two of the fungi (N1 and N2) were Neocallimastix species isolated from a ruminant (sheep) and the other two fungi were Piromyces species (E2 and R1) isolated from an Indian Elephant and an Indian Rhinoceros, respectively. The tested anaerobic fungi degraded the filter paper cellulose almost completely and estimated cellulose digestion rates were 0.25, 0.13, 0.21 and 0.18 g · 1-1 · h-1 for strains E2, N1, N2, R1, respectively. All strains secreted cellulolytic and xylanolytic enzymes, including endoglucanase, exoglucanase, -glucosidase and xylanase. Strain E2 secreted the highest levels of enzymes in a relatively short time. The product formation on avicel by enzymes secreted by the four fungi was studied. Both in the presence and absence of glucurono-1,5--lactone, a specific inhibitor of -glucosidase, mainly glucose was formed but no cellobiose. Therefore the exoglucanase secreted by the four fungi is probably a glucohydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号