首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
By direct RNA sequence analysis we have determined the primary structures of both the 5' and 3' domains for rabbit 18S ribosomal RNA. Purified 18S rRNA was labeled in vitro at either its 5' or 3' terminus with 32P, base-specifically fragmented enzymatically and chemically, and the resulting fragments electrophoretically fractionated by size in adjacent lanes of 140 cm long polyacrylamide sequencing gels run in 90% formamide. A phylogenetic comparison of both the mammalian 5' proximal 400 residues and the 3' distal 301 nucleotides with the previously determined yeast and Xenopus laevis 18S rRNA sequence shows extensive conservation interspersed with tracts having little homology. Clusters of G + C rich sequences are present within the mammalian 5' domain which are entirely absent in both the Xenopus laevis and yeast 18S rRNAs. Most base differences and insertions within the mammalian 18S rRNA when compared with yeast or Xenopus rRNA result in an increase in the G + C content of these regions. We have found nucleotide sequence analysis of the ribosomal RNA directly permits detection of both cistron heterogeneities and mapping of many of the modified bases.  相似文献   

6.
7.
8.
9.
10.
Most of the ribosomal RNA genes of the yeast Saccharomyces cerevisiae are about 9 kilobases (kb) in size and encode both the 35S rRNA (processed to produce the 25S, 18S, and 5.8S species) and 5S rRNA. These genes are arranged in a single tandem array of 100 repeats. Below, we present evidence that at the centromere-distal end of this array is a tandem arrangement of a different type of rRNA gene. Each of these repeats is 3.6 kb in length and encodes a single 5S rRNA. The coding sequence of this gene is different from that of the "normal" 5S gene in three positions located at the 3' end of the gene.  相似文献   

11.
12.
I Palmero  J Renart  L Sastre 《Gene》1988,68(2):239-248
cDNA clones coding for Artemia mitochondrial 16S ribosomal RNA (rRNA) have been isolated. The clones cover from nucleotide 650 of the RNA molecule to its 3' end. The comparison of Artemia sequence with both vertebrate and invertebrate mitochondrial 16S rRNA sequences has shown the existence of regions of high similarity between them. A model for the secondary structure of the 3' half of Artemia mitochondrial 16S rRNA is proposed. The size of the rRNA molecule has been estimated at 1.35 kb. Despite the similarity of the Artemia gene to insect rRNA in size, sequence and secondary structure, the G + C content of the Artemia gene (42%) is closer to that of mammals than to the insect genes. The number of mitochondria in Artemia has been estimated at 1500 per diploid genome in the cyst and 4000 in the nauplius. In contrast, the amount of mt 16S rRNA is constant at all stages of Artemia development.  相似文献   

13.
14.
15.
The yeast Saccharomyces cerevisiae has about 30 to 50 copies of a transposable element Ty. Most of these elements are located at the 5' ends of protein coding sequences and are flanked by a 5 bp duplication. We report below an insertion of a Ty element into one of the repeated ribosomal RNA (rRNA) genes of yeast. The element is located between the 3' ends of the divergentally transcribed 37S and 5S rRNA's and is not flanked by a 5 bp duplication. In addition, one end of the Ty insertion is contiguous with a 306 bp deletion of the sequences of the rRNA gene. We find that this insertion, unlike most Ty insertions, is mitotically unstable.  相似文献   

16.
The nucleotide sequences of 5S rRNA molecules isolated from the cytosol and the mitochondria of the ascomycetes A. nidulans and N. crassa were determined by partial chemical cleavage of 3'-terminally labelled RNA. The sequence identity of the cytosolic and mitochondrial RNA preparations confirms the absence of mitochondrion-specific 5S rRNA in these fungi. The sequences of the two organisms differ in 35 positions, and each sequence differs from yeast 5S rRNA in 44 positions. Both molecules contain the sequence GCUC in place of GAAC or GAUY found in all other 5S rRNAs, indicating that this region is not universally involved in base-pairing to the invariant GTpsiC sequence of tRNAs.  相似文献   

17.
18.
We have determined the nucleotide sequence alteration in the 15S rRNA gene of a Saccharomyces cerevisiae strain carrying the previously described mitochondrial ochre suppressor, MSUI. The suppressor contains an A residue at position 633 of the yeast mitochondrial sequence, in place of the wild-type G. This position, located in the highly conserved region forming the stem of the '530-loop', corresponds to G517 of the Escherichia coli 16S rRNA and is occupied by G in all other known small rRNA sequences. This finding strongly supports the previous conclusions of others that the 530-loop region plays an important role in enhancing translational accuracy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号