首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synopsis A method is described for measuring the latency of lysosomal acid phosphatase in cultured rat heart endotheloid cells.210Pb was added to a medium used to demonstrate acid phosphatase activity by the Gomori lead method, and the amount of lead deposited was measured with a liquid scintillation counter. Deposition rates were measured after enzyme activation pretreatments with acetate buffer (pH 5.0) at various osmolalities, and after formaldehyde fixation. Formaldehyde, alloxan, or fluoride in the Gomori medium were evaluated for their differential effects on lysosomal and non-lysosomal acid phosphatase. The method was found to provide a sensitive, rapid and quantitative evaluation of acid phosphatase latency and should be useful for studying the integrity of lysosomes within cells.  相似文献   

2.
Tartrate-inhibitable acid phosphatase was purified to apparent homogeneity from human placenta. The enzyme is composed of two subunits with an apparent molecular mass of 48 kDa. Each subunit carries one oligosaccharide of the high-mannose/hybride type. The purified enzyme has an isoelectric point of pH 6.2. It cleaves phosphomonoester bonds at acid pH, is competitively inhibited by L-tartrate, Ki = 0.51 microM, and phosphate, Ki = 0.8mM. A monospecific antiserum raised against the purified placental enzyme precipitated 62% and 85% of the tartrate-inhibitable acid phosphatase present in extracts of placenta and fibroblasts, respectively. By means of subcellular fractionation and immunoprecipitation it was shown that the majority of tartrate-inhibitable acid phosphatase is located in lysosomes in normal and mucolipidosis II fibroblasts. In the human Hep G-2 hepatoma cells a significant fraction of the enzyme appears to be associated with non-lysosomal organelles.  相似文献   

3.
An acid ribonuclease has been purified from HeLa cell lysosomes. The specific activity of the RNase in lysosomes is 8-fold higher than that in nuclei and 15-fold higher than that in the postlysosomal fraction. The purified enzyme showed no detectable DNase, phosphodiesterase, phosphatase, or alkaline RNase activity. The acid RNase binds to Con A-agarose and is inferred to be a glycoprotein. It has a low isoelectric point at pH 3.0 to 3.5, and the optimal pH for activity is between 5.0 and 5.5. The enzyme requires no divalent cation for optimal activity and is totally inhibited by 1 mM Cu2+ or Hg2+. Monovalent cations including Na+, K+, and NH4+ stimulate the activity in low ionic strength buffer. The enzyme degrades rRNA faster than tRNA, and tRNA faster than poly(U); poly(A) and poly(C) are highly resistant. The products from rRNA are mostly oligonucleotides with 3'-phosphate ends. An acid RNase is also present in the lysosomes of L-cells grown in a medium free of serum; it is probably identical to the one described here.  相似文献   

4.
A study has been made of the decay of acid phosphatase (ACP1) in the human red cell using red cell fractions of different mean ages prepared by density gradient centrifugation. Red cells from acid phosphatase type A and type B individuals were used in the study. Acid phosphatase activity of the red cell fractions was determined by two different assay methods. The results obtained were comparable and have been combined. Acid phosphatase type A and type B showed a biphasic decay pattern with a rapid early loss of activity, followed by a more gradual rate of decline. Type A appeared to decay more rapidly than type B in both decay phases. It is proposed that differences in stability between type A and type B in vivo may explain the observed differences in activity between the enzyme types. There was no evidence for the generation of secondary isozymes by acid phosphatase type A or type B during red cell aging.  相似文献   

5.
A new variant phenotype of human red cell acid phosphatase, designated EB, was discovered in a male during a survey of blood donors from Copenhagen, Denmark. Electrophoretically, the variant revealed the two isozymes corresponding to the B type as well as two fast moving anodic isozymes. The enzyme activity and thermostability were found to be higher than in any earlier reported type. Isoelectric focusing of the variant type indicated that the isoelectric point of the variant enzyme is lower than in the common types.  相似文献   

6.
Summary Lysosomes are defined traditionally with the marker enzyme acid phosphatase. We showed recently that lysosomes from human fibroblasts can be separated into a light and dense fraction as well as prelysosomal population. We now provide evidence that although acid phosphatase is enriched in all three fractions, the marker enzyme in the prelysosomal compartment is qualitatively distinct from that of the lysosomes. Ultrastructural analysis showed that the acid phosphatase in the prelysosomal vesicles deposited an extremely electron-dense reaction product, entirely obliterating the lumen of the vesicle, in contrast to that of the light and dense lysosomes which deposited a fine and diffuse product scattered throughout the luminal space. Biochemical analysis showed that only 51% of the acid phosphatase in the prelysosomes was inhibited by tartrate, while 80% of that in the lysosomes was tartrate-inhibitable. Immunoprecipitation with antibodies specific for various isozymes of acid phosphatase showed that 39% of the acid phosphatase in the prelysosomes was of the lysosomal type whereas over 5007o of the acid phosphatase in the lysosomes was of this type. These results showed that acid phosphatase in the prelysosomes of human cultured fibroblasts can be distinguished from that of the lysosomes cytochemically, biochemically, and immunologically and that lysosomes, as marked by acid phosphatase, are a heterogeneous organelle.  相似文献   

7.
G R Dickson 《Histochemistry》1978,57(4):343-347
The ultrastructural localization of alkaline phosphatase was studied in the hypertrophic chondrocyte of the frog (Rana temporaria) by incubating sections of glutaraldehyde fixed tissue in a medium containing sodium beta glycerophosphate and calcium chloride. Control specimens were incubated in substrate free medium. Alkaline phosphatase (orthophosphoric monoester phosphohydrolase) is a high molecular weight glycoprotein that hydrolyses phosphorylated metabolites much as acid phosphatase does except that its action is optimal at an alkaline pH. The results of this investigation showed that alkaline phosphatase activity was present within the cytoplasm and around the plasma membrane of frog hypertrophic chondrocytes. Although only a small proportion of frog hypertrophic chondrocytes demonstrated enzyme activity, there was evidence that this was concentrated within Golgi lamellae and vesicles leaving other organelles unreactive. The finding of alkaline phosphatase activity within Golgi lamellae of hypertrophic chondrocytes is regarded as unusual although postitive reactions within chondrocyte lysosomes have previously been reported (Doty and Schofield, 1976).  相似文献   

8.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

9.
Human platelets are rich in β-hexosaminidase and other acid hydrolases contained in organelles (lysosomes) distinct from α-granules and dense granules. Incubation of platelets with bovine or human thrombin (100 U/ml for 5 min at 37°C) induces the secretion of 100% of the contents of α- and dense granules, but only 40–60% of total β-hexosaminidase from lysosomes. Both isozymes Hex A and Hex B are secreted in the same proportion as found intracellulary. There is no selective recapture or plasma membrane binding by platelets of secreted β-hexosaminidase. The secreted enzyme is of the low-uptake type, i.e., it is poorly recognized by the phosphomannosyl receptor-mediated uptake mechanism of fibroblasts, while the retained enzyme is a 3-fold higher uptake form. Preincubation of platelets with NH4Cl (10 mM, 2 h), followed by thrombin stimulation, results in secretion of all β-hexosaminidase as a low-uptake form. The data support the hypothesis that there are secretory and nonsecretory forms of lysosomes. The secretory lysosomes would contain low-uptake forms of hydrolases in addition to acid phosphatase, while the nonsecretory lysosomes would contain high-uptake hydrolases and be acid phosphatase-deficient. Conditions where the contents of both lysosomal populations were released together, i.e., amine treatment followed by thrombin induction, or extraction of unstimulated cells, would result in the exposure of high-uptake phosphomannosylated hydrolases released from one population of lysosomes to acid phosphatase released from the second population of lysosomes with their subsequent conversion to low-uptake forms.  相似文献   

10.
Summary The ultrastructural localization of alkaline phosphatase was studied in the hypertrophic chondrocyte of the frog (Rana temporaria) by incubating sections of glutaraldehyde fixed tissue in a medium containing sodium glycerophosphate and calcium chloride. Control specimens were incubated in substrate free medium.Alkaline phosphatase (orthophosphoric monoester phosphohydrolase) is a hight molecular weight glycoprotein that hydrolyses phosphorylated metabolites much as acid phosphatase does except that its action is optimal at an alkaline pH.The results of this investigation showed that alkaline phosphatase activity was present within the cytoplasm and around the plasma membrane of frog hypertrophic chondrocytes. Although only a small proportion of frog hypertrophic chondrocytes demonstrated enzyme activity, there was evidence that this was concentrated within Golgi lamellae and vesicles leaving other organelles unreactive. The finding of alkaline phosphatase activity within Golgi lamellae of hypertrophic chondrocytes is regarded as unusual although positive reactions within chondrocyte lysosomes have previously been reported (Doty and Schofield, 1976).  相似文献   

11.
Macrophages were obtained by pulmonary lavage from normal rabbits or rabbits that had developed pulmonary granulomas after receiving intravenous BCG vaccine 2-3 weeks earlier. The cells were disrupted in iso-osmotic sucrose and a low-speed supernatant was fractionated by isopycnic centrifugation on a linear sucrose density gradient. Three populations of hydrolase-containing granules (putative lysosomes) were found in both normal and BCG-induced macrophages. They were distinguished by their different distributions in the gradient and different sensitivities to disruption by digitonin and were termed:type A, containing lysozyme; type B, containing N-acetyl-beta-glucosaminidase, beta-glactosidase, beta-glucuronidase and possibly some lysozyme; type C, containing cathepsin D. Acid phosphatase appeared to be about equally distributed between type B and C granules. Type A and B granules from BCG-induced macrophages showed markedly greater equilibrium density than did those from normal macrophages. Beta-glucuronidase and acid phosphatase had greater specific activity in the induced cells.  相似文献   

12.
In order to use leakage of lysosomal acid phosphatase (AP) as a biomarker of stress to earthworms, more information about AP’s in earthworms are needed. This paper describes the details about tentatively classified APs in the earthworm Eisenia veneta. Two isoenzymes (enzyme I and II) of acid phosphatase (AP) and one alkaline phosphatase (enzyme III) from the earthworm E. veneta were separated by gel filtration. All three enzymes were further purified and concentrated on a Con A Sepharose 4B column. Enzyme I was inhibited by tartrate, showed an optimal pH range between 4.0 and 5.0 and was assumed to be of lysosomal origin. Enzyme II was the major enzyme showing the highest activity of the three enzymes. It was expected to be a lysosomal AP under physiological conditions. Enzyme II had a molecular mass 113 kDa and was composed of apparently identical polypeptide chains of 36 kDa each. This enzyme was inhibited by tartrate, showed an optimal pH in the range 6.0–7.5 and was slowly degraded at temperatures above 40°C. Enzyme III is not inhibited by tartrate and has a pH-optimum >9. The subcellular location under physiological conditions was assumed to be the cytosol.  相似文献   

13.
The tissue content of pyridoxal 5'-phosphate is controlled principally by the protein binding of this coenzyme and its hydrolysis by a cellular phosphatase. The present study identifies this enzyme and its intracellular location in rat liver. Pyridoxal-P is not hydrolyzed by the acid phosphatase of intact lysosomes. At pH 7.4 and 9.0, the subcellular distribution of pyridoxal-P phosphatase activity is similar to the for p-nitrophenyl-P, and the major portion of both activities is found in the plasma membrane fraction. The ratio of specific activities for pyridoxal-P and p-nitrophenyl-P hydrolysis remains relatively constant during the isolation of plasma membranes. These activities also behave concordantly with respect to pH rate profile, pH-Km profile, and response to chelating agents, Zn2+, Mg2+, and inhibitors. Kinetic studies indicate that pyridoxal-P binds to same enzyme sites as beta-glycerophosphate and phosphorylcholine. The data strongly favor alkaline phosphatase as the enzyme which functions in the control of pyridoxal-P and pyridoxamine-P metabolism in rat liver. Alkaline phosphatase was solubilized from isolated plasma membranes. The kinetic properties of the enzyme are not markedly altered by its dissociation from the membrane matrix. However, there are significant differences in its behavior toward Mg2+ which suggest a structural role for Mg2+ in liver alkaline phosphatase.  相似文献   

14.
The cytochemical characterization of head-kidney and peripheral blood leucocytes of gilthead seabream (Sparus aurata L.) was studied by light and electron microscopy. Neutrophilic granulocytes show some cytoplasmic granules, which are positive for alkaline phosphatase and peroxidase but acid phosphatase negative. The scarce granules found in the cytoplasm of the circulating neutrophils and their cytochemical features seem to be indicative of an immature stage. Acidophils are also alkaline phosphatase and peroxidase positive at pH 11.0. They are strongly positive for acid phosphatase and acid phosphatase activity may thus be considered a cytochemical marker to characterize and differentiate neutrophilic from acidophilic granulocytes in this fish species. Three granule populations are characterized in the cytoplasm of the gilthead seabream acidophils: the first is positive only for peroxidase and the second contains a dense core with acid and alkaline phosphatase activities, surrounded by a thin peroxidase positive electron-dense halo. The third granule type contains an eccentric core, which is strongly positive for acid and alkaline phosphatase and peroxidase. As regards their cytochemical features, the first and second granule types seem to correspond respectively to the azurophilic and specific granules found in acidophils of mammals and could be involved in phagocytic processes, thus playing an important microbicidal role in this species. The monocytes, monocyte-macrophages and macrophages show different cytochemical features. The first have scarce acid phosphatase-positive lysosomes, while blood monocyte-macrophages and macrophages are positive for acid and alkaline phosphatases and for peroxidase; the monocyte-macrophages show scarce lysosomes.  相似文献   

15.
The carbethoxylation of prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) was accompanied by modification of histidine residues and the inactivation of the enzyme. These findings are consistent with photoinactivation experiments described earlier (Rybarska, J. and Ostrowski, W (1974) Acta Biochim, Polon. 21, 377--390). Prostatic acid phosphatase was phosphorylated at alkaline pH using p-nitrophenyl [32P]phosphate as substrate. Phosphoryl enzyme is stable in alkaline solutions and undergoes dephosphorylation at acidic pH. After hydrolysis of phosphoryl enzyme in strong alkaline solution, a single phosphoryl amino acid was isolated from hydrolyzate and identified as the tau-phosphohistidine.  相似文献   

16.
Isolation and properties of lysosomes from dark-grown potato shoots   总被引:1,自引:1,他引:0  
D. Pitt  Mary Galpin 《Planta》1972,109(3):233-258
Summary A method is described for the isolation of lysosomal fractions from dark-grown potato shoots using a single stage separation on a Ficoll gradient. Peaks of acid hydrolase activity consisting of acid phosphatase, phosphodiesterase, ribonuclease, carboxylic esterase and -glycerophosphatase were well separated from peaks of mitochondrial and glyoxysomal enzymes. A heavy lysosomal fraction with particle diameters from 0.1 to 1.6 and density of 1.10 g cm-3 containing relatively low hydrolase activity was distinguishable from a light fraction with diameters 0.025 to 0.6 and density of 1.07 g cm-3 with a higher level of hydrolase activity. Both fractions appeared heterogeneous by electron microscopy, but the fine structure of the membranes of both heavy and light lysosomes was similar. The heavy lysosomal fraction was rich in autophagic vacuoles (secondary lysosomes) containing organelles and amorphous cytoplasmic material. Both fractions were rich in ribonucleic acid.Freezing and thawing, high speed blending and ultrasonication either singly or in combination solubilised a maximum of ca. 30% of the acid phosphatase from crude lysosomal fractions derived from dark-grown potato shoots. Treatment with Triton X-100 and deoxycholate released appreciably more enzyme activity but acetone and carbon tetrachloride failed to solubilise any acid phosphatase. Only detergent treatments gave marked overrecovery of enzyme and indicated structure-linked latency. Liberation of enzyme from lysosomes varied with pH and was almost complete at both extremes of pH. Crude snake venom was rapid and effective in solubilising acid phosphatase from lysosomal preparations, purified phospholipase A was less effective and phospholipases C and D had negligible effects. Phospholipase and venom mediated release of acid phosphatase was accompanied by the coincident release of an acid end-product. Gel filtration of acid phosphatase liberated from heavy and light lysosomal fractions by snake venom digestion revealed that each of these fractions was characterised by the presence of distinct molecular forms of the enzyme. The nature of the association of acid phosphatase with potato shoot lysosomes is discussed.  相似文献   

17.
Effects of novel taurolipid A and B localized in Tetrahymena lysosomes on the activities of lysosomal enzymes purified from Tetrahymena were investigated. Both taurolipids activated acid phosphatase, while they did not affect α-glucosidase and β-hexosaminidase. The acid phosphatase activity was activated approximately 3-fold by both taurolipids A and B, with the half-maximum activations for taurolipid A and B being at approximately 1.03·10−4 and 0.72·10−4 M, respectively. When the purified acid phosphatase was incubated at 37°C in citrate-phosphate buffer (pH 5.0) its activity was rapidly inactivated, but the inactivation was prevented to a remarkable extent by the addition of taurolipids to the incubation medium. These results thus suggest that the taurolipids may be involved in activating and stabilizing acid phosphatase in Tetrahymena lysosomes.  相似文献   

18.
As a step toward understanding of the role of adenylate kinase (AK) in energy metabolism, we analyzed this enzyme in Drosophila melanogaster. The enzyme activities of all three AK isozymes were determined in cell-free extracts of flies, and their proteins were detected by Western blot analysis using polyclonal antibodies against the mammalian isozymes. A cDNA encoding adenylate kinase was isolated from D. melanogaster cDNA library. The cDNA encodes a 240-amino acid protein, which shows high similarity to bovine, human and rat AK2, and hence was named DAK2. Preliminary subcellular fractionation analysis indicated that DAK2 is localized in both cytoplasm and mitochondria. In situ hybridization to salivary gland polytene chromosomes revealed that the Dak2 gene is located at 60B on the right arm of the second chromosome.  相似文献   

19.
Both the biochemical profile and the optical and fine structural localization of acid phosphatase activity in the larval salivary glands of developing Drosophila melanogaster is described. Biochemically, acid phosphatase shows peak activity in the glands of feeding larvae, followed by a marked decline. Directly preceding the onset of cell histolysis however, enzyme activity increases 1.5 fold and is maintained at this level. Histochemically, acid phosphatase activity initially appears as discrete point or lysosomal sources. As development proceeds, an intense and diffuse form of enzyme is seen, accompanying an extremely vacuolated cytoplasm. Ultrastructurally, the enzyme is located in lysosomes, Golgi elements, multivesicular bodies and both within, and on the extracisternal surface of the rough endoplasmic reticulum. This extracisternal or cytosolic form appears directly preceding cell lysis and eventually shows a comprehensive cellular distribution. Large numbers of acid phosphatase positive haemocytes are attached to the basal glandular surface at all developmental stages. In morphologically intact gland cells, discrete extracisternal enzyme activity appears associated with local areas of degradation.  相似文献   

20.
E600 resistant non-specific esterase activity or acid phosphatase activity were localized in corticotrophic cells identified by postembedding immunocytochemistry (PAP of protein A-immunogold techniques). The lysosomal system of this cell type consists of dense bodies, of a population of small lysosomes mostly situated at the cell periphery in the vicinity of secretory granules as well as of tubular structures. These latter were located either in the central part of the cytoplasm and probably belonged to the Golgi apparatus or at the cell periphery, partly in the extensions. Small lysosomes occurred to be in continuity with enzyme-containing tubules. In a few structures lysosomal enzyme activity and ACTH immunoreactivity overlapped. Some autophagic vacuoles seemed to contain secretory granule matrix. It is suggested that the concept of crinophagy can be extended to the corticotrophs, though the lysosomal system may be involved in the specific function of this cell type by other mechanisms as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号