首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extracellular matrix (ECM) molecules extracted from the leech central nervous system (CNS) provide substrates that induce extensive growth of processes of identified leech nerve cells in culture. Two ECM molecules, laminin and tenascin, have been identified. The laminin-like molecule has been purified and shown to be a cross-shaped molecule similar to vertebrate laminin with subunits of 340, 220, 180, and 160 kD. Purified laminin as a substrate induces rapid outgrowth of Retzius (R) and Anterior Pagoda (AP) cells in culture. The tenascin molecule has been partially purified. In electronmicrographs, leech tenascin, like vertebrate tenascin, has six arms of equal size joined in a central globule. Highly enriched fractions of leech tenascin induce rapid and extensive outgrowth of Retzius and AP cells in culture. Substrate molecules not only induce outgrowth of processes but also affect the growth patterns of individual nerve cells. Neurites are straight with few branches in laminin, but curved with profuse branches on tenascin. During regeneration of the CNS in the animal, laminin appears at new sites associated with growth cones. The appearance of laminin correlates with the accumulation of microglial cells. Thus, ECM molecules with growth-promoting activity for leech nerve cells in vitro appear to be involved in inducing regeneration and allowing the neurites to reconnect with former targets.  相似文献   

2.
Extracellular matrix (ECM) molecules extracted from the leech central nervous system (CNS) provide substrates that induce extensive growth of processes of identified leech nerve cells in culture. Two ECM molecules, laminin and tenascin, have been identified. The laminin-like molecule has been purified and shown to be a cross-shaped molecule similar to vertebrate laminin with subunits of 340, 220, 180, and 160 kD. Purified laminin as a substrate induces rapid outgrowth of Retzius (R) and Anterior Pagoda (AP) cells in culture. The tenascin molecule has been partially purified. In electronmicrographs, leech tenascin, like vertebrate tenascin, has six arms of equal size joined in a central globule. Highly enriched fractions of leech tenascin induce rapid and extensive outgrowth of Retzius and AP cells in culture. Substrate molecules not only induce outgrowth of processes but also affect the growth patterns of individual nerve cells. Neurites are straight with few branches in laminin, but curved with profuse branches on tenascin. During regeneration of the CNS in the animal, laminin appears at new sites associated with growth cones. The appearance of laminin correlates with the accumulation of microglial cells. Thus, ECM molecules with growth-promoting activity for leech nerve cells in vitro appear to be involved in inducing regeneration and allowing the neurites to reconnect with former targets. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The molecular composition of the substrate is of critical importance for neurite extension by isolated identified leech nerve cells in culture. One substrate upon which rapid growth occurs in defined medium is a cell-free extract of extracellular matrix (ECM) that surrounds the leech central nervous system (CNS). Here we report the co-purification of neurite-promoting activity with a laminin-like molecule. High molecular mass proteins from leech ECM purified by gel filtration exhibited increased specific activity for promoting neurite outgrowth. The most active fractions contained three major polypeptide bands of ca. 340, 250 and 220 kDa. Electron microscopy of rotary-shadowed samples showed three macromolecules, one of which had a cross-shaped structure similar to vertebrate laminin. A second six-armed molecule resembled vertebrate tenascin and a third rod-like molecule resembled vertebrate collagen type IV. The most active fractions contained a protein of ca. 1 MDa on non-reducing gels with disulphide-linked subunits of ca. 220 and 340 kDa, with cross-shaped laminin-like molecules. We conclude that a laminin-like molecule represents a major neurite promoting component present in leech ECM. The experiments represent a first step in determining the location of leech laminin within the CNS and assessing its role in neurite outgrowth during development and regeneration.  相似文献   

4.
We studied the steps in the formation of the bipolar outgrowth pattern of cultured adult Anterior Pagoda (AP) neurons of the leech growing on a central nervous system (CNS) homogenate as substrate. This pattern, which consists of two primary neurites directed in opposite directions plus some bifurcations, resembles their embryonic pattern but is different from the patterns they develop in culture on leech laminin or Concanavalin A as substrates. In eight neurons that were studied, one primary neurite formed and branched several hours before the second one. Time-lapse video analysis showed that between 12 and 36 h of growth, the more proximal branch of the early neurite migrated retrogradely, rotated, and formed the second primary branch. Both neurites elongated until the total neurite length reached 130-160 microm, when the elongation of primary neurites became synchronous with the retraction of secondary processes, suggesting competition. The substrate dependence of these events was tested by plating AP neurons on leech laminin. On this substrate AP neurons produced multiple independent primary neurites with branches. Retraction of some large branches was followed by their regrowth, and did not correlate with the changes in other neurites. We propose that the dynamics in the formation of the bipolar outgrowth pattern of AP neurons arise from inhibitory extracellular matrix molecules, which reduce the synthesis of precursors for neurite formation.  相似文献   

5.
We studied the steps in the formation of the bipolar outgrowth pattern of cultured adult Anterior Pagoda (AP) neurons of the leech growing on a central nervous system (CNS) homogenate as substrate. This pattern, which consists of two primary neurites directed in opposite directions plus some bifurcations, resembles their embryonic pattern but is different from the patterns they develop in culture on leech laminin or Concanavalin A as substrates. In eight neurons that were studied, one primary neurite formed and branched several hours before the second one. Time‐lapse video analysis showed that between 12 and 36 h of growth, the more proximal branch of the early neurite migrated retrogradely, rotated, and formed the second primary branch. Both neurites elongated until the total neurite length reached 130–160 μm, when the elongation of primary neurites became synchronous with the retraction of secondary processes, suggesting competition. The substrate dependence of these events was tested by plating AP neurons on leech laminin. On this substrate AP neurons produced multiple independent primary neurites with branches. Retraction of some large branches was followed by their regrowth, and did not correlate with the changes in other neurites. We propose that the dynamics in the formation of the bipolar outgrowth pattern of AP neurons arise from inhibitory extracellular matrix molecules, which reduce the synthesis of precursors for neurite formation. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 106–117, 2002; DOI 10.1002/neu.10017  相似文献   

6.
In the central nervous system (CNS), damaged axons are inhibited from regeneration by glial scars, where secreted chondroitin sulfate proteoglycan (CSPG) and tenascin repulse outgrowth of neurites, the forerunners of axons and dendrites. During differentiation, these molecules are thought to form boundaries for guiding neurons to their correct targets. In neuroblastoma NIE-115 cells, outgrowth of neurites on laminin could be induced by serum starvation or inhibition of RhoA by Clostridium botulinum C3 toxin. The outgrowing neurites avoided crossing onto the repulsive substrate CSPG or tenascin. This avoidance response was partially overcome on expression of membrane-targeted and kinase-inactive forms of PAK. In these cells, the endogenous PAK isoforms colocalized with actin in distinctive sites, alphaPAK in the cell center as small clusters and along the neurite shaft and betaPAK and gammaPAK in areas with membrane ruffles and filopodia, respectively. When isoform-specific N-terminal PAK sequences were introduced to interfere with PAK function, substantially more neurites crossed onto CSPG when cells contained a gammaPAK-derived peptide but not the corresponding alphaPAK- or betaPAK-derived peptide. Thus, while neurite outgrowth can be promoted by RhoA inhibition, overcoming the accompanying repulsive guidance response will require modulation of PAK activity. These results have therapeutic implications for CNS repair processes.  相似文献   

7.
J Engel 《FEBS letters》1989,251(1-2):1-7
Multidomain proteins of the extracellular matrix (ECM) play an important role in development and maintenance of cellular organization and in tissue repair. Several ECM proteins such as laminin, tenascin and thrombospondin contain domains with homology to epidermal growth factor (EGF) and exhibit growth promoting activity. The mitogenic activity of laminin is restricted to a fragment which consists of about 25 repeating domains with partial homology to EGF and comprises the rod-like inner regions of the three short arms of the four armed molecule. The mitogenic activity does not correlate with promotion of cell attachment and neurite outgrowth for which major functional sites have been found in other regions of the laminin molecule. It is suggested that EGF-like domains in laminin, in other ECM proteins and in the extracellular portions of some membrane proteins are signals for cellular growth and differentiation. Because they are integral parts of large molecules and often of supramolecular assemblies these domains are well suited to stimulate neighboring cells in a specific and vectorial way. This concept of localized growth or differentiation signals offers an attractive mechanism for the regulation of cellular development.  相似文献   

8.
Cortical development is dependent on the timely production and migration of neurons from neurogenic sites to their mature positions. Mutations in several receptors for extracellular matrix (ECM) molecules and their downstream signaling cascades produce dysplasia in brain. Although mutation of a critical binding site in the gene that encodes the ECM molecule laminin γ1 (Lamc1) disrupts cortical lamination, the ECM ligand(s) for many ECM receptors have not been demonstrated directly in the cortex. Several isoforms of the heterotrimeric laminins, all containing the β2 and γ3 chain, have been isolated from the brain, suggesting they are important for CNS function. Here, we report that mice homozygous null for the laminin β2 and γ3 chains exhibit cortical laminar disorganization. Mice lacking both of these laminin chains exhibit hallmarks of human cobblestone lissencephaly (type II, nonclassical): they demonstrate severe laminar disruption; midline fusion; perturbation of Cajal‐Retzius cell distribution; altered radial glial cell morphology; and ectopic germinal zones. Surprisingly, heterozygous mice also exhibit laminar disruption of cortical neurons, albeit with lesser severity. In compound null mice, the pial basement membrane is fractured, and the distribution of a key laminin receptor, dystroglycan, is altered. These data suggest that β2 and γ3‐containing laminins play an important dose‐dependent role in development of the cortical pial basement membrane, which serves as an attachment site for Cajal‐Retzius and radial glial cells, thereby guiding neural development. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

9.
Profuse sprouting of leech neurons occurs in culture when they are plated on a substrate consisting of laminin molecules extracted from extracellular matrix that surrounds the central nervous system (CNS). To assess the role of laminin as a potential growth-promoting molecule in the animal, its distribution was compared in intact and regenerating CNS by light and electronmicroscopy, after it had been labelled with an anti-leech-laminin monoclonal antibody (206) and conjugated second antibodies. In frozen sections and electron micrographs of normal leeches the label was restricted to the connective-tissue capsule surrounding the connectives that link ganglia. Immediately after the connectives had been crushed the normal structure was disrupted but laminin remained in place. Two days after the crush, axons began to sprout vigorously and microglial cells accumulated in the lesion. At the same time, labelled laminin molecules were no longer restricted to the basement membrane but appeared within the connectives in the regions of neurite outgrowth. The distribution of laminin at these new sites within the CNS was punctate at two days, but changed over the following two weeks: the laminin became aggregated as condensed streaks running longitudinally within the connectives beyond the lesion. The close association of regenerating axons with laminin suggests that it may promote axonal growth in the CNS of the animal as in culture.  相似文献   

10.
Leech neurons in culture sprout rapidly when attached to extracts from connective tissue surrounding the nervous system. Laminin-like molecules that promote sprouting have now been isolated from this extracellular matrix. Two mAbs have been prepared that react on immunoblots with a approximately equal to 220- and a approximately equal to 340-kD polypeptide, respectively. These antibodies have been used to purify molecules with cross-shaped structures in the electron microscope. The molecules, of approximately equal to 10(3) kD on nonreducing SDS gels, have subunits of approximately equal to 340, 220, and 160-180 kD. Attachment to the laminin-like molecules was sufficient to initiate sprouting by single isolated leech neurons in defined medium. This demonstrates directly a function for a laminin-related invertebrate protein. The mAbs directed against the approximately equal to 220-kD chains of the laminin-like leech molecule labeled basement membrane extracellular matrix in leech ganglia and nerves. A polyclonal antiserum against the approximately equal to 220-kD polypeptide inhibited neurite outgrowth. Vertebrate laminin did not mediate the sprouting of leech neurons; similarly, the leech molecule was an inert substrate for vertebrate neurons. Although some traits of structure, function, and distribution are conserved between vertebrate laminin and the invertebrate molecule, our results suggest that the functional domains differ.  相似文献   

11.
《The Journal of cell biology》1986,103(6):2659-2672
We have compared neurite outgrowth on extracellular matrix (ECM) constituents to outgrowth on glial and muscle cell surfaces. Embryonic chick ciliary ganglion (CG) neurons regenerate neurites rapidly on surfaces coated with laminin (LN), fibronectin (FN), conditioned media (CM) from several non-neuronal cell types that secrete LN, and on intact extracellular matrices. Neurite outgrowth on all of these substrates is blocked by two monoclonal antibodies, CSAT and JG22, that prevent the adhesion of many cells, including neurons, to the ECM constituents LN, FN, and collagen. Neurite outgrowth is inhibited even on mixed LN/poly-D-lysine substrates where neuronal attachment is independent of LN. Therefore, neuronal process outgrowth on extracellular matrices requires the function of neuronal cell surface molecules recognized by these antibodies. The surfaces of cultured astrocytes, Schwann cells, and skeletal myotubes also promote rapid process outgrowth from CG neurons. Neurite outgrowth on these surfaces, though, is not prevented by CSAT or JG22 antibodies. In addition, antibodies to a LN/proteoglycan complex that block neurite outgrowth on several LN-containing CM factors and on an ECM extract failed to inhibit cell surface-stimulated neurite outgrowth. After extraction with a nonionic detergent, Schwann cells and myotubes continue to support rapid neurite outgrowth. However, the activity associated with the detergent insoluble residue is blocked by CSAT and JG22 antibodies. Detergent extraction of astrocytes, in contrast, removes all neurite- promoting activity. These results provide evidence for at least two types of neuronal interactions with cells that promote neurite outgrowth. One involves adhesive proteins present in the ECM and ECM receptors on neurons. The second is mediated through detergent- extractable macromolecules present on non-neuronal cell surfaces and different, uncharacterized receptor(s) on neurons. Schwann cells and skeletal myotubes appear to promote neurite outgrowth by both mechanisms.  相似文献   

12.
The molecular composition of the substrate on which neurons are cultured is critical for their attachment, survival, and extension of processes. The aim of the present experiments was to characterize the molecules in an extracellular matrix (ECM) extract that promotes the outgrowth of processes from cultured adult frog motoneurons. An extract was made of skeletal muscle ECM and tested as a substrate for cultured motoneurons. The average total process length of motoneurons cultured on this crude ECM extract is greater than when the neurons are cultured on concanavalin A, poly-l-lysine or mouse tumor (EHS) laminin. Gel filtration of the ECM extract yielded fractions with an increased specific activity for promoting process outgrowth. The most active fractions exhibit a single major polypeptide band of ca. 1 mD and two minor bands of ca. greater than 1 mD and 205 kD upon sodium dodecyl sulfate gel electrophoresis. Under reducing conditions, three major bands were seen of 340, 205, and 200 kD. Electron microscopy of rotary-shadowed ECM fractions showed macromolecules with a cross-shaped structure similar to vertebrate and invertebrate laminin, a rod-like molecule resembling vertebrate and invertebrate collagen type IV, and a third molecule similar in appearance to vertebrate fibrillin. These results represent the first step in analyzing the role of substrate molecules in promoting neuromuscular reinnervation. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The localization of the extracellular matrix recognition molecule J1/tenascin was investigated in the crypt-villus unit of the adult mouse ileum by immunoelectron microscopic techniques. In the villus region, J1/tenascin was detected strongly in the extracellular matrix (ECM) between fibroblasts of the lamina propria. It was generally absent in the ECM at the interface between subepithelial fibroblasts and intestinal epithelium, except for some restricted areas along the epithelial basal lamina of villi, but not of crypts. These restricted areas corresponded approximately to the basal part of one epithelial cell. In J1/tenascin-positive areas, epithelial cells contacted the basal lamina with numerous microvillus-like processes, whereas in J1/tenascin-negative areas the basal surface membranes of epithelial cells contacted their basal lamina in a smooth and continuous apposition. In order to characterize the functional role of J1/tenascin in the interaction between epithelial cells and ECM, the intestinal epithelial cell line HT-29 was tested for its ability to adhere to different ECM components. Cells adhered to substratum-immobilized fibronectin, laminin and collagen types I to IV, but not to J1/tenascin. When laminin or collagen types I to IV were mixed with J1/tenascin, cell adhesion was as effective as without J1/tenascin. However, adhesion was completely abolished when cells were offered a mixture of fibronectin and J1/tenascin as substratum. The ability of J1/tenascin to reduce the adhesion of intestinal epithelial cells to their fibronectin-containing basal lamina suggests that J1/tenascin may be involved in the process of physiological cell shedding from the villus.  相似文献   

14.
We have isolated a nonneuronal cell line from Xenopus retinal neuroepithelium (XR1 cell line). On the basis of immunocytochemical characterization using monoclonal antibodies generated in our laboratory as well as several other glial-specific antibodies, we have established that the XR1 cells are derived from embryonic astroglia. A monolayer of XR1 cells serves as an excellent substrate upon which embryonic retinal explants attach and elaborate neurites. This neurite outgrowth promoting activity appears not to be secreted into the medium, as medium conditioned by XR1 cells is ineffective in promoting outgrowth. Cell-free substrates were prepared to examine whether outgrowth promoting activity is also associated with the XR1 extracellular matrix (ECM). Substrates derived from XR1 cells grown on collagen are still capable of promoting outgrowth following osmotic shock and chemical extraction. This activity does not appear to be associated with laminin or fibronectin. Scanning electron microscopy was used to examine growth cones of retinal axons on XR1 cells and other substrates that supported neurite outgrowth. Growth cones and neurites growing on a monolayer of XR1 cells, or on collagen conditioned by XR1 cells, closely resemble the growth cones of retinal ganglion cells in vivo. A polyclonal antiserum (NOB1) generated against XR1 cells effectively and specifically inhibits neurite outgrowth on XR1-conditioned collagen. We therefore propose that neurite outgrowth promoting factors produced by these cells are associated with the extracellular matrix and may be glial specific.  相似文献   

15.
The influence of J1/tenascin adsorbed to polyornithine-conditioned plastic (substrate-bound J1/tenascin) and J1/tenascin present in the culture medium (soluble J1/tenascin) on neurite outgrowth was studied with cultured single cells from hippocampus and mesencephalon of embryonic rats. Neurons at low density grew well on J1/tenascin substrates and extended neurites that were approximately 40% longer than on the polyornithine control substrate after 24 h in vitro. The neurite outgrowth promoting effect of substrate bound J1/tenascin was largely abolished in the presence of mAb J1/tn2, but not by mAb J1/tn1. In contrast to the neurite growth-promoting effects of substrate bound J1/tenascin, neurite outgrowth on polyornithine, laminin, fibronectin, or J1/tenascin as substrates was inhibited by addition of soluble J1/tenascin to the cultures. Neither of the two mAbs neutralized the neurite outgrowth-inhibitory properties of soluble J1/tenascin. In contrast to their opposite effects on neurite outgrowth, both substrate-bound and soluble J1/tenascin reduced spreading of the neuronal cell bodies, suggesting that the neurite outgrowth-promoting and antispreading effects are mediated by two different sites on the molecule. This was further supported by the inability of the mAb J1/tn2 to neutralize the antispreading effect. The J1/tn2 epitope localizes to a fibronectin type III homology domain that is presumably distinct from the putative Tn68 cell-binding domain of chicken tenascin for fibroblasts, as shown by electronmicroscopic localization of antibody binding sites. We infer from these experiments that J1/tenascin contains a neurite outgrowth promoting domain that is distinguishable from the cell-binding site and presumably not involved in the inhibition of neurite outgrowth or cell spreading. Our observations support the notion that J1/tenascin is a multifunctional extracellular matrix molecule.  相似文献   

16.
I Thesleff 《Ontogenez》1989,20(4):341-349
A series of reciprocal interactions between epithelial and mesenchymal tissues control the morphogenesis and cell differentiation in the developing tooth. The molecular mechanisms operating in these interactions are, however, unknown at present. Structural components of the extracellular matrix (ECM) affect cellular behavior in the embryo and appear to be involved also in these regulatory processes. The ECM molecules exert their effects on cells through binding to specific matrix receptors on the cell surface. This review article summarizes our findings on the distribution patterns during tooth development of the ECM glycoproteins, fibronectin and tenascin, and of the cell surface proteoglycan, syndecan, which functions as a receptor for interstitial matrix. Based on the observed changes in these distribution patterns and on experimental evidence, roles for these molecules in epithelial-mesenchymal interactions during tooth development are suggested. Fibronectin and tenascin are enriched in the dental basement membrane at the time of odontoblast differentiation. These matrix glycoproteins may be involved in the cell-matrix interaction which controls differentiation of the dental mesenchymal cells into odontoblasts. Tenascin and syndecan are accumulated in the dental mesenchyme during bud stage of development. We have shown in tissue recombination experiments that the presumptive dental epithelium induces the expression of tenascin and syndecan in mesenchyme. We suggest that these molecules are involved in cell-matrix interactions, which regulate mesenchymal cell condensation during the earliest stages of tooth morphogenesis.  相似文献   

17.
We have investigated the development of segmental diversity in an identified leech neuron, the Retzius cell. Retzius cells in the genital segments differ from those in other segments in lacking central axons and contacting different peripheral targets: the genitalia. These differences are not apparent during initial axon outgrowth, when all Retzius cells follow the same morphogenetic pattern. Rather, they first appear about the time the peripheral axons of the genital segment Retzius cells contact the genital primordia. This suggests that the pattern of central and peripheral axonal outgrowth may be modified by an interaction with peripheral targets.  相似文献   

18.
《The Journal of cell biology》1993,123(4):1037-1045
Tenascin, a predominantly mesenchymal extracellular matrix (ECM) glycoprotein has a rather restricted tissue distribution, but until now factors that inhibit its expression have not been identified. Glucocorticoids are known to be beneficial for establishment of myelopoiesis in long-term bone marrow cultures. Tenascin was found to be expressed in the bone marrow, and glucocorticoids were found to affect bone marrow tenascin expression. Both tenascin mRNAs and the mRNA of another ECM protein, laminin B1 chain, were drastically downregulated by glucocorticoids during initiation of bone marrow cultures. However, in already established long-term cultures glucocorticoids did not affect laminin B1 chain mRNA levels although tenascin mRNAs continued to be downregulated. Studies with a stromal cell line (MC3T3-G2/PA6) and fibroblasts (3T3) suggested that glucocorticoids act directly on the stromal cells that produce tenascin. In 3T3 cells this downregulation occurred within 12 h of glucocorticoid-treatment, suggesting that glucocorticoids acted through cis regulatory elements of the tenascin gene. We suggest that glucocorticoids in part regulate hematopoiesis by modifying the ECM. Furthermore, downregulation of tenascin expression by glucocorticoids may in part explain the restricted tissue distribution of tenascin in other tissues.  相似文献   

19.
The extracellular matrix protein, tenascin, appears in a restricted pattern during organ morphogenesis. Here we studied the expression of tenascin along developing peripheral nerves in chick embryos and tested its activity as a substrate for cultured neurons. Motor axons grow out through the tenascin-rich, anterior part of the sclerotome. Shortly after, tenascin surrounds axon fascicles of ventral roots. At the limb levels, outgrowing axons accumulate in the tenascin-containing girdle region forming a plexus. In the limb, tenascin first appears in bracket-like structures that surround the precartilage cell condensations of the femur and humerus, respectively. These regions coincide with the channels along which axons first grow in from the girdle plexus to form the limb nerves. Later, the major tenascin staining is associated with the cartilage and tendon primordia, and not with the limb nerves. We used tenascin as a substrate for cultured neural explants and single cells in order to test for its function in neurite outgrowth. Dissociated embryonic neurons of various types attached to mixed polylysine/tenascin substrates and sprouted rapidly after a lag of several hours. Outgrowth was inhibited and neurites were detached by anti-tenascin antibodies. On substrates coated with tenascin alone, neurite outgrowth was achieved from 3 day spinal cord explants. Whereas growth cones were well spread and rapidly moving, the neurites were poorly attached, straight and rarely branched. We speculate that in vivo tenascin allows axonal outgrowth, but inhibits branching and supports fasciculation of newly formed axons.  相似文献   

20.
Summary Lectins with different sugar specificities and labeled with horseradish peroxidase or gold were used to study, at the electron-microscopic level, surface glycoconjugates of glial cells and neurites growing out from explant cultures of the central nervous system of embryonic locusts. Differential binding to differentiating glial cells and to neurites was demonstrated. Concanavalin A (Con A) and wheat-germ agglutinin (WGA) bound to glial and neurite surfaces with different degrees of labeling. The formation of glial processes and junctional complexes was invariably accompanied by a corresponding increase of Con A- and WGA-receptors. Peanut agglutinin (PNA) failed to bind to glial cells but strongly stained the plasma membrane of neurite junctions. Lotus tetragonolobus a. (LTA) did not bind either to glial cells or to neurites. In addition, staining with an antibody against laminin showed labeling in areas of neurite outgrowth and neurite interactions; this resembled the localization of PNA receptors. These findings provide evidence for the presence of different carbohydrates at the surface of neurites and glial cells of locust. Their predominant localization in glial processes and neurite junctions suggests that these carbohydrates constitute part of a group adhesion glycoproteins that also includes laminin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号