首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》1986,849(1):16-24
The flash-induced absorption transient at 698 nm in a Photosystem I subchloroplast particle showed the following characteristics after addition of 0.25–2.0% lithium dodecyl sulfate (LDS). (i) The 30-ms transient corresponding to the P-700+ P-430 backreaction was replaced by a 1.2-ms transient. (ii) The amplitude of the transient did not change immediately after LDS addition, but decayed with a half-life of 10 min at pH 8.5. (iii) Methyl viologen had no effect on the magnitude or kinetics of the transient, indicating that it cannot accept an electron from this component. (iv) The difference spectrum of the transient from 400 nm to 500 nm was characteristic of an iron-sulfur protein. (v) The transient followed first-order Arrhenius behavior between 298 K and 225 K with an activation energy of 13.3 kJ/mol; between 225 K and 77 K, the 85-ms half-time remained temperature-invariant. These properties suggest that the LDS-induced absorption transient corresponds to the P-700+ A2 change recombination seen in the absence of a reduced electron-acceptor system. In the presence of LDS, the reaction-center complex was dissociated, allowing removal of the smaller peptides from the 64-kDa P-700-containing protein. With prolonged incubation, the iron-sulfur clusters were destroyed through conversion of the labile sulfide to zero-valence sulfur. About 35% of the zero-valence sulfur was found associated with the 64-kDa protein under conditions that allowed separation of the small peptides. We interpret the long lifetime of the P-700+ A2 transient after LDS addition and the association of zero-valence sulfur with a 64-kDa protein to indicate that A2 is closely associated with, and perhaps integral with, the P-700-containing protein.  相似文献   

2.
Iron-sulfur (Fe-S) clusters are important prosthetic groups in all organisms. The biosynthesis of Fe-S clusters has been studied extensively in bacteria and yeast. By contrast, much remains to be discovered about Fe-S cluster biogenesis in higher plants. Plant plastids are known to make their own Fe-S clusters. Plastid Fe-S proteins are involved in essential metabolic pathways, such as photosynthesis, nitrogen and sulfur assimilation, protein import, and chlorophyll transformation. This review aims to summarize the roles of Fe-S proteins in essential metabolic pathways and to give an overview of the latest findings on plastidic Fe-S assembly. The plastidic Fe-S biosynthetic machinery contains many homologues of bacterial mobilization of sulfur (SUF) proteins, but there are additional components and properties that may be plant-specific. These additional features could make the plastidic machinery more suitable for assembling Fe-S clusters in the presence of oxygen, and may enable it to be regulated in response to oxidative stress, iron status and light.  相似文献   

3.
Iron-sulfur (Fe-S) clusters are key metal cofactors of metabolic, regulatory, and stress response proteins in most organisms. The unique properties of these clusters make them susceptible to disruption by iron starvation or oxidative stress. Both iron and sulfur can be perturbed under stress conditions, leading to Fe-S cluster defects. Bacteria and higher plants contain a specialized system for Fe-S cluster biosynthesis under stress, namely the Suf pathway. In Escherichia coli the Suf pathway consists of six proteins with functions that are only partially characterized. Here we describe how the SufS and SufE proteins interact with the SufBCD protein complex to facilitate sulfur liberation from cysteine and donation for Fe-S cluster assembly. It was previously shown that the cysteine desulfurase SufS donates sulfur to the sulfur transfer protein SufE. We have found here that SufE in turn interacts with the SufB protein for sulfur transfer to that protein. The interaction occurs only if SufC is present. Furthermore, SufB can act as a site for Fe-S cluster assembly in the Suf system. This provides the first evidence of a novel site for Fe-S cluster assembly in the SufBCD complex.  相似文献   

4.
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins.  相似文献   

5.
Xu XM  Møller SG 《The EMBO journal》2006,25(4):900-909
Iron-sulfur (Fe-S) clusters are vital prosthetic groups for Fe-S proteins involved in fundamental processes such as electron transfer, metabolism, sensing and signaling. In plants, sulfur (SUF) protein-mediated Fe-S cluster biogenesis involves iron acquisition and sulfur mobilization, processes suggested to be plastidic. Here we have shown that AtSufE in Arabidopsis rescues growth defects in SufE-deficient Escherichia coli. In contrast to other SUF proteins, AtSufE localizes to plastids and mitochondria interacting with the plastidic AtSufS and mitochondrial AtNifS1 cysteine desulfurases. AtSufE activates AtSufS and AtNifS1 cysteine desulfurization, and AtSufE activity restoration in either plastids or mitochondria is not sufficient to rescue embryo lethality in AtSufE loss-of-function mutants. AtSufE overexpression induces AtSufS and AtNifS1 expression, which in turn leads to elevated cysteine desulfurization activity, chlorosis and retarded development. Our data demonstrate that plastidic and mitochondrial Fe-S cluster biogenesis shares a common, essential component, and that AtSufE acts as an activator of plastidic and mitochondrial desulfurases in Arabidopsis.  相似文献   

6.
Methanogenesis is an ancient metabolism that originated on the early anoxic Earth. The buildup of O(2) about 2.4 billion years ago led to formation of a large oceanic sulfate pool, the onset of widespread sulfate reduction and the marginalization of methanogens to anoxic and sulfate-poor niches. Contemporary methanogens are restricted to anaerobic habitats and may have retained some metabolic relics that were common in early anaerobic life. Consistent with this hypothesis, methanogens do not utilize sulfate as a sulfur source, Cys is not utilized as a sulfur donor for Fe-S cluster and Met biosynthesis, and Cys biosynthesis uses an unusual tRNA-dependent pathway.  相似文献   

7.
Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [35S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-35S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the 35S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia.  相似文献   

8.
The assembly of iron-sulfur (Fe-S) clusters involves several pathways and in prokaryotes the mobilization of the sulfur (SUF) system is paramount for Fe-S biogenesis and repair during oxidative stress. The prokaryotic SUF system consists of six proteins: SufC is an ABC/ATPase that forms a complex with SufB and SufD, SufA acts as a scaffold protein, and SufE and SufS are involved in sulfur mobilization from cysteine. Despite the importance of Fe-S proteins in higher plant plastids, little is known regarding plastidic Fe-S cluster assembly. We have recently shown that Arabidopsis harbors an evolutionary conserved plastidic SufC protein (AtNAP7) capable of hydrolyzing ATP and interacting with the SufD homolog AtNAP6. Based on this and the prokaryotic SUF system we speculated that a SufB-like protein may exist in plastids. Here we demonstrate that the Arabidopsis plastid-localized SufB homolog AtNAP1 can complement SufB deficiency in Escherichia coli during oxidative stress. Furthermore, we demonstrate that AtNAP1 can interact with AtNAP7 inside living chloroplasts suggesting the presence of a plastidic AtNAP1.AtNAP6.AtNAP7 complex and remarkable evolutionary conservation of the SUF system. However, in contrast to prokaryotic SufB proteins with no associated ATPase activity we show that AtNAP1 is an iron-stimulated ATPase and that AtNAP1 is capable of forming homodimers. Our results suggest that AtNAP1 represents an atypical plastidic SufB-like protein important for Fe-S cluster assembly and for regulating iron homeostasis in Arabidopsis.  相似文献   

9.
Iron-sulfur proteins: ancient structures, still full of surprises   总被引:8,自引:0,他引:8  
This article is a survey of the properties and functions of Fe-S proteins under the following headings: sulfur and iron; iron-sulfur clusters; evolution of cofactor use; early observations; complex and extended clusters; sulfur exchange and core interconversions; synthesis and biosynthesis of Fe-S clusters; functions of Fe-S clusters: electron transfer, electron delocalization, spin states and magnetism, covalency of sulfur bonds; non-electron transfer functions of Fe-S clusters: substrate binding and catalysis, regulatory and sensing functions.  相似文献   

10.
Assembly of iron-sulfur (Fe-S) clusters and maturation of Fe-S proteins in vivo require complex machineries. In Escherichia coli, under adverse stress conditions, this process is achieved by the SUF system that contains six proteins as follows: SufA, SufB, SufC, SufD, SufS, and SufE. Here, we provide a detailed characterization of the SufBCD complex whose function was so far unknown. Using biochemical and spectroscopic analyses, we demonstrate the following: (i) the complex as isolated exists mainly in a 1:2:1 (B:C:D) stoichiometry; (ii) the complex can assemble a [4Fe-4S] cluster in vitro and transfer it to target proteins; and (iii) the complex binds one molecule of flavin adenine nucleotide per SufBC2D complex, only in its reduced form (FADH2), which has the ability to reduce ferric iron. These results suggest that the SufBC2D complex functions as a novel type of scaffold protein that assembles an Fe-S cluster through the mobilization of sulfur from the SufSE cysteine desulfurase and the FADH2-dependent reductive mobilization of iron.  相似文献   

11.
Tong WH  Rouault T 《The EMBO journal》2000,19(21):5692-5700
Iron-sulfur (Fe-S) clusters are cofactors found in many proteins that have important redox, catalytic or regulatory functions. In mammalian cells, almost all known Fe-S proteins are found in the mitochondria, but at least one is found in the cytosol. Here we report cloning of the human homologs to IscU and NifU, iron-binding proteins that play a critical role in Fe-S cluster assembly in bacteria. In human cells, alternative splicing of a common pre-mRNA results in synthesis of two proteins that differ at the N-terminus and localize either to the cytosol (IscU1) or to the mitochondria (IscU2). Biochemical analyses demonstrate that IscU proteins specifically associate with IscS, a cysteine desulfurase that is proposed to sequester inorganic sulfur for Fe-S cluster assembly. Protein complexes containing IscU and IscS can be found in the mitochondria as well as in the cytosol, implying that Fe-S cluster assembly takes place in multiple subcellular compartments in mammalian cells. The possible roles of the IscU proteins in mammalian cells and the potential implications of compartmentalization of Fe-S cluster assembly are discussed.  相似文献   

12.
Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044G→C), compound heterozygous patients with severe myopathy have been identified to carry the c.149G→A missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.  相似文献   

13.
The effect of inhibitors of glutathione (GSH) synthesis, namely gamma-methyl glutamic acid, d-glutamic acid, cystamine, methionine-S-sulfoximine (MSX), buthionine-S-sulfoximine, and GSH itself, on the emission of H(2)S was investigated. All these compounds stimulated H(2)S emission from pumpkin (Cucurbita pepo L. cv Small Sugar Pumpkin) leaf discs in response to sulfate. MSX and GSH were the most effective compounds, stimulating H(2)S emission from leaf discs of mature pumpkin leaves by about 80% in response to sulfate. Both inhibitors did not appreciably enhance H(2)S emission in response to l-cysteine and inhibited H(2)S emission in response to sulfite.Treatment with MSX or GSH enhanced the uptake of sulfate by pumpkin leaf discs, but did not affect the incorporation of sulfate into reduced sulfur compounds. Inhibition of GSH synthesis by MSX or GSH caused an increase in the pool size of cysteine, and, simultaneously, reduced the incorporation of labeled sulfate into cysteine. The incorporation of labeled sulfate into the sulfite and sulfide pools of the cells are stimulated under these conditions.These observations are consistent with the idea that inhibition of GSH synthesis leads to an elevated cysteine pool that inhibits further cysteine synthesis. The H(2)S emitted under these conditions appears to arise from diversion of a precursor of the sulfur moiety of l-cysteine. Therefore, stimulation of H(2)S emission in response to sulfate upon inhibition of GSH synthesis may reflect a role of H(2)S emission in keeping the cysteine concentration below a critical level.  相似文献   

14.
The interactions of sodium dodecyl sulfate with a number of proteins were examined at a variety of pH values ranging from 4.8 to 11.6 The dodecyl sulfate-induced precipitation of some of these proteins was observed within a relatively limited range of total dodecyl sulfate concentration. Most of the basic proteins precipitated at low pH but as the isoelectric point of the protein was approached the amount of protein that precipitated decreased. Bovine myelin basic protein was unique in that it precipitated at all pH values examined both above and below its isoelectric point. Thus, the dodecyl sulfate-induced precipitation of myelin basic protein appears to be different from the dodecyl sulfate-induced precipitation of most proteins. A comparison of protein precipitation at equivalent dodecyl sulfate: protein molar or weight ratios revealed very little difference in the precipitation behavior of the proteins studied. When the bovine myelin basic protein was cleaved at its single tryptophan residue, the N-terminal fragment (1–115) formed insoluble dodecyl sulfate complexes at pH values ranging from 4.8 to 9.2. The C-terminal fragment (116–169) precipitated almost completely at pH 4.8 but to a lesser extent at pH 7.4 and 9.2 Equimolar mixtures of the N- and C-terminal fragments precipitated in the presence of dodecyl sulfate at pH 7.4 and 9.2 to an extent greater than the C-terminal fragment alone but comparable to the N-terminal fragment alone or the whole basic protein. These results suggest: (a) that the mechanism by which dodecyl sulfate induces the precipitation of myelin basic protein may be unique compared to other proteins and (b) that the intact myelin basic protein is not necessary for its precipitation by dodecyl sulfate.  相似文献   

15.
Olson JW  Agar JN  Johnson MK  Maier RJ 《Biochemistry》2000,39(51):16213-16219
The Fe-S cluster formation proteins NifU and NifS are essential for viability in the ulcer causing human pathogen Helicobacter pylori. Obtaining viable H. pylori mutants upon mutagenesis of the genes encoding NifU and NifS was unsuccessful even by growing the potential transformants under many different conditions including low O(2) atmosphere and supplementation with both ferric and ferrous iron. When a second copy of nifU was introduced into the chromosome at a unrelated site, creating a mero-diploid strain for nifU, this second copy of the gene could be disrupted at high frequency. This indicates that the procedures used for transformation were capable of nifU mutagenesis, so that the failure to recover mutants is solely due to the requirement of nifU for H. pylori viability. H. pylori NifU and NifS were expressed in Escherichia coli and purified to near homogeneity, and the proteins were characterized. Purified NifU is a red protein that contains approximately 1.5 atoms of iron per monomer. This iron was determined to be in the form of a redox-active [2Fe-2S](2+,+) cluster by characteristic UV-visible, EPR, and MCD spectra. The primary structure of NifU also contains the three conserved cysteine residues which are involved in providing the scaffold for the assembly of a transient Fe-S cluster for insertion into apoprotein. Purified NifS has a yellow color and UV-visible spectra characteristic of a pyridoxal phosphate containing enzyme. NifS is a cysteine desulfurase, releasing sulfur or sulfide (depending on the reducing environment) from L-cysteine, in agreement with its proposed role as a sulfur donor to Fe-S clusters. The results here indicate that the NifU type of Fe-S cluster formation proteins is not specific for maturation of the nitrogenase proteins and, as H. pylori lacks other Fe-S cluster assembly proteins, that the H. pylori NifS and NifU are responsible for the assembly of many (non-nitrogenase) Fe-S clusters.  相似文献   

16.
Densonucleosis virus cannot code for its four structural proteins if each of them has a unique sequence. The objective of the present investigation, therefore, was to establish whether: (i) the viral genome contains overlapping genes; (ii) the virus incorporates host proteins; or (iii) one of the structural proteins is a dimer. Two independent methods were employed for this purpose. First, the viral proteins, solubilized in sodium dodecyl sulfate, were purified after dansylation and were analyzed by peptide mapping, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Second, an enzyme-linked immunosorbent assay was developed for a comparative analysis of the viral proteins solubilized by sodium dodecyl sulfate. It was demonstrated with both techniques that densonucleosis virus has four unique structural proteins, all with extensive sequence homologies. Moreover, all structural proteins contained intraprotein, but no interprotein, disulfide linkages. These results indicated similarities between densonucleosis virus and representatives of the two other genera of the Parvoviridae.  相似文献   

17.
The isc and suf operons in Escherichia coli represent alternative genetic systems optimized to mediate the essential metabolic process of iron-sulfur cluster (Fe-S) assembly under basal or oxidative-stress conditions, respectively. Some of the proteins in these two operons share strong sequence homology, e.g. the cysteine desulfurases IscS and SufS, and presumably play the same role in the oxygen-sensitive assembly process. However, other proteins in these operons share no significant homology and occur in a mutually exclusive manner in Fe-S assembly operons in other organisms (e.g. IscU and SufE). These latter proteins presumably play distinct roles adapted to the different assembly mechanisms used by the two systems. IscU has three invariant cysteine residues that function as a template for Fe-S assembly while accepting a sulfur atom from IscS. SufE, in contrast, does not function as an Fe-S assembly template but has been suggested to function as a shuttle protein that uses a persulfide linkage to a single invariant cysteine residue to transfer a sulfur atom from SufS to an alternative Fe-S assembly template. Here, we present and analyze the 2.0A crystal structure of E.coli SufE. The structure shows that the persulfide-forming cysteine occurs at the tip of a loop with elevated B-factors, where its side-chain is buried from solvent exposure in a hydrophobic cavity located beneath a highly conserved surface. Despite the lack of sequence homology, the core of SufE shows strong structural similarity to IscU, and the sulfur-acceptor site in SufE coincides with the location of the cysteine residues mediating Fe-S cluster assembly in IscU. Thus, a conserved core structure is implicated in mediating the interactions of both SufE and IscU with the mutually homologous cysteine desulfurase enzymes present in their respective operons. A similar core structure is observed in a domain found in a variety of Fe-S cluster containing flavoenzymes including xanthine dehydrogenase, where it also mediates interdomain interactions. Therefore, the core fold of SufE/IscU has been adapted to mediate interdomain interactions in diverse redox protein systems in the course of evolution.  相似文献   

18.
Dihydroxy acid dehydratase from spinach contains a [2Fe-2S] cluster   总被引:3,自引:0,他引:3  
Dihydroxy acid dehydratase, the third enzyme in the branched-chain amino acid biosynthetic pathway, has been purified to homogeneity (5000-fold) from spinach leaves. The molecular weights of dihydroxy acid dehydratase as determined by sodium dodecyl sulfate and native gel electrophoresis are 63,000 and 110,000, respectively, suggesting the native enzyme is a dimer. 2 moles of iron were found per mol of protein monomer. Chemical analyses of iron and labile sulfide gave an Fe/S2- ratio of 0.95. The EPR spectrum of dithionite-reduced enzyme (gavg = 1.91) is similar to spectra characteristic of Rieske Fe-S proteins and has a spin concentration of 1 spin/1.9 irons. These results strongly suggest that dihydroxy acid dehydratase contains a [2Fe-2S] cluster, a novel finding for enzymes of the hydrolyase class. In contrast to the Rieske Fe-S proteins, the redox potential of the Fe-S cluster is quite low (-470 mV). Upon addition of substrate, the EPR signal of the reduced enzyme changes to one typical of 2Fe ferredoxins (gavg = 1.95), and the visible absorption spectrum of the native enzyme shows substantial changes between 400 and 600 nm. Reduction of the Fe-S cluster decreases the enzyme activity by 6-fold under Vmax conditions. These results suggest the direct involvement of the [2Fe-2S] cluster of dihydroxy acid dehydratase in catalysis. Similar conclusions have been reached for the catalytic involvement of the [4Fe-4S] cluster of the hydrolyase aconitase (Emptage, M. H., Kent, T. A., Kennedy, M. C., Beinert, H., and Münck, E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 4674-4678).  相似文献   

19.
Details are provided for a reproducible procedure for determination of labile sulfide in iron-sulfur (Fe-S) proteins in the range of 1 to 3 nmol. Analyses are also presented on the most stable Fe-S protein so far reported. In this case denaturation with guanidine.HCl was used in the presence of dithiothreitol. The values obtained then also include any sulfane sulfur (S0) present.  相似文献   

20.
The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号