首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12-to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4–8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.The authors would like to thank Mr. Kevin Bianchini for his assistance in this study.  相似文献   

2.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12- to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4-8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.  相似文献   

3.
Reduced seizure incidence coupled with voluntary motor inhibition accompanied conditioned increases in the sensorimotor rhythm(SMR), a 12–14 Hz rhythm appearing over rolandic cortex. Although SMR biofeedback training has been successfully applied to various forms of epilepsy in humans, its potential use in decreasing hyperactivity has been limited to a few cases in which a seizure history was also a significant feature. The present study represents a first attempt to explore the technique's applicability to the problem of hyperkinesis independent of the epilepsy issue. The results of several months of EEG biofeedback training in a hyperkinetic child tend to corroborate and extend previous findings. Feedback presentations for SMR were contingent on the production of 12–14-Hz activity in the absence of 4–7-Hz slow-wave activity. A substantial increase in SMR occurred with progressive SMR training and was associated with enhanced motor inhibition, as gauged by laboratory measures of muscular tone(chin EMG) and by a global behavioral assessment in the classroom. Opposite trends in motor inhibition occurred when the training procedure was reversed and feedback presentations were contingent on the production of 4–7 Hz in the absence of 12–14-Hz activity. Although the preliminary nature of these results is stressed, the subject population has recently been increased to establish the validity and generality of the findings and will include the use of SMR biofeedback training after medication has been withdrawn.This research was a segment of the junior author's dissertation research.  相似文献   

4.
ObjectiveEpileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause frequent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical relevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a deep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats.MethodsSeizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal periods were then recorded and analyzed to predict epileptic seizures. Epileptic seizures were predicted by calculating an index in consecutive windows of EEG signal and comparing the index with a threshold. In this work, a newly proposed dissimilarity index called Bhattacharyya Based Dissimilarity Index (BBDI), dynamical similarity index and fuzzy similarity index were investigated.ResultsBBDI, dynamical similarity index and fuzzy similarity index were examined on case and control groups and compared to each other. The results show that BBDI outperforms dynamical and fuzzy similarity indices. In order to improve the results, EEG sub-bands were also analyzed. The best result achieved when the proposed dissimilarity index was applied on Delta sub-band that predicts epileptic seizures in all rats with a mean of 299.5 s.ConclusionThe dissimilarity of neural network activity between reference window and present window of EEG signal has a significant increase prior to an epileptic seizure and the proposed dissimilarity index (BBDI) can reveal this variation to predict epileptic seizures. In addition, analyzing EEG sub-bands results in more accurate information about constituent neuronal activities underlying the EEG since certain changes in EEG signal may be amplified when each sub-band is analyzed separately.SignificanceThis paper presents application of a dissimilarity index (BBDI) on EEG signals and its sub-bands to predict PTZ-induced epileptic seizures in rats. Based on the results of this work, BBDI will predict epileptic seizures more accurately and more reliably compared to current indices that increases epileptic patient comfort and improves patient outcomes.  相似文献   

5.
After 1 year of SMR biofeedback training of a severe epileptic teenage male, incidence of atonic seizures decreased from 8/hr to less than 1/3 hr. SMR increased from 10% to 70%. Epileptiform discharges decreased from 45% to 15%. Unknown to the patient, his family, or certain members of our research staff, noncontingent feedback was introduced on 7/22/74, ending 9/11/74. A significant decrease occurred for SMR(down 8%), and a significant increase for epileptiform discharges(up 4%). Rate of seizures increased, but was not statistically significant over preceding months of contingent feedback. Incidence of seizures associated with urine loss increased from approximately 6/month to 23/month during noncontingent feedback, a significant increase. Urine-loss results suggest that although seizures did not become more frequent, those the patient did experience were “harder,” i.e., more severe. Contingent feedback was reinstituted following the 7-wk sham, and recovery of all variables to their former levels(prior to sham) occurred.  相似文献   

6.
The sleep EEGs of eight medically refractory epileptic patients were examined as part of a double-blind, ABA crossover study designed to determine the effectiveness of EEG biofeedback for the control of seizures. The patients were initially reinforced for one of three EEG criteria recorded from electrodes placed over sensorimotor cortex: (a) suppression of 3- to 7-Hz activity, (b) enhancement of 12- to 15-Hz activity, or (c) simultaneous suppression of 3- to 7-Hz and enhancement of 11- to 19-Hz activity. Reinforcement contingencies were reversed during the second or B phase, and then reinstated in their original form during the final A′ phase. All-night polysomnographic recordings were obtained at the end of each conditioning phase and were subjected to both visual and computer-based power spectral analyses. Four of the patients showed changes in their nocturnal paroxysmal activity that were either partially or totally consistent with the ABA′ contingencies of the study. The spectral data proved difficult to interpret, though two trends emerged from the analyses. Decreases in nocturnal 4- to 7-Hz activity were correlated with decreases in seizure activity, and increases in 8- to 11-Hz activity were correlated with decreases in seizure activity. These findings were shown to strengthen the hypothesis that EEG biofeedback may produce changes in the sleep EEG that are related to seizure incidence.  相似文献   

7.
We aimed to develop and validate a reliable method for stable long-term recordings of EEG activity in zebrafish, which is less prone to artifacts than current invasive techniques. EEG activity was recorded with a blunt electrolyte-filled glass pipette placed on the zebrafish head mimicking surface EEG technology in man. In addition, paralysis of agarose-embedded fish using D-tubocurarine excluded movement artifacts associated with epileptic activity. This non-invasive recording technique allowed recordings for up to one hour and produced less artifacts than impaling the zebrafish optic tectum with a patch pipette. Paralyzed fish survived, and normal heartbeat could be monitored for over 1h. Our technique allowed the demonstration of specific epileptic activity in kcnj10a morphant fish (a model for EAST syndrome) closely resembling epileptic activity induced by pentylenetetrazol. This new method documented that seizures in the zebrafish EAST model were ameliorated by pentobarbitone, but not diazepam, validating its usefulness. In conclusion, non-invasive recordings in paralyzed EAST syndrome zebrafish proved stable, reliable and robust, showing qualitatively similar frequency spectra to those obtained from pentylenetetrazol-treated fish. This technique may prove particularly useful in zebrafish epilepsy models that show infrequent or conditional seizure activity.  相似文献   

8.
This report describes periodic oscillations in electroencephalographic (EEG) and behavioral activity with a cycle length of 15–30 seconds in chair-restrained squirrel monkeys (Saimiri sciureus). These oscillations consisted of alternating episodes of vigilance, characterized by visual scanning and motor movement, and inattentiveness, characterized by behavioral quiescence with little eye or limb movement. During vigilance the EEG exhibited low-amplitude, high-frequency (> 16 Hz) activity. During quiescent periods, a high-amplitude synchronized EEG was present with activity in the 8–16-Hz band predominating. The presence or frequency of this EEG and behavioral periodicity was not modified by time of day, as no difference was found between morning and afternoon recording sessions. Although the factors or mechanisms responsible for this rhythm are unclear, it should be noted by those investigators studying the behavior or neurophysiology of Saimiri sciureus in the laboratory setting.  相似文献   

9.
Enhanced voluntary motor inhibition regularly accompanies conditioned increases in the sensorimotor rhythm (SMR), a 12–14-Hz Rolandic EEG rhythm in cats. A similar rhythm, presumably SMR, has also been identified in the human EEG. The clinical effectiveness of SMR operant conditioning has been claimed for epilepsy, insomnia, and hyperkinesis concurrent with seizure disorders. The present report attempts to follow up and replicate preliminary findings that suggested the technique's successful application to hyperkinesis uncomplicated by a history of epilepsy. SMR was defined as 12–14-Hz EEG activity in the absence of high-voltage slow-wave activity between 4 and 7 Hz. Anticipated treatment effects were indexed by systematic behavioral assessments of undirected motor activity and short attention span in the classroom. EEG and behavioral indices were monitored in four hyperkinetic children under the following six conditions: (1) No Drug, (2) Drug Only, (3) Drug and SMR Training I, (4) Drug and SMR Reversal Training, (5) Drug and SMR Training II, (6) No Drug and SMR Training. All hyperkinetic subjects were maintained on a constant drug regimen throughout the phases employing chemotherapy. Contingent increases and decreases in SMR occurred in three of four training subjects and were associated with similar changes in classroom assessments of motor inactivity. Combining medication and SMR training resulted in substantial improvements that exceeded the effects of drugs alone and were sustained with SMR training after medication was withdrawn. In contrast, these physiological and behavioral changes were absent in one highly distractible subject who failed to acquire the SMR task. Finally, pretraining levels of SMR accurately reflected both the severity of original motor deficits and the susceptibility of hyperkinetic subjects to both treatments. Although the procedure clearly reduced hyperkinetic behavior, a salient, specific therapeutic factor could not be identified due to the dual EEG contingency imposed combined with associated changes in EMG. Despite these and other qualifying factors, the findings suggested the prognostic and diagnostic value of the SMR in the disorder when overactivity rather than distractibility is the predominant behavioral deficit.  相似文献   

10.
Spontaneous seizures have been observed in several baboon species housed at the Southwest National Primate Research Center (SNPRC), including Papio hamadryas anubis and cynocephalus/anubis, hamadryas/anubis, and papio/anubis hybrids. The goal of this study was to establish a noninvasive, reliable electroencephalographic technique to characterize epilepsy phenotypes and assess photosensitivity in these subspecies. Thirty baboons with witnessed seizures, and 15 asymptomatic baboons underwent scalp electroencephalograms (EEGs) with photic stimulation (PS). The sensitivity and specificity of surface EEG for identifying interictal epileptic discharges (IEDs) in baboons with witnessed seizures were examined. The morphology of IEDs, electroclinical features of seizures and responses to PS, reproducibility of EEG findings, and intrarater reliability were also evaluated. Twenty-three seizure baboons (77%) demonstrated IEDs, predominantly with frequencies of 4-6 Hz in 18 baboons and 2-3 Hz in six baboons. Two seizure animals had a mixture of 2-3-Hz and 4-6-Hz IEDs. All animals with 2-3-Hz IEDs were 3 years old or younger. Myoclonic seizures (MS) and generalized tonic-clonic seizures (GTCS) were recorded in 13 baboons (43%). PS activated IEDs in 15 baboons (50%) and seizures in nine baboons. The presence of IEDs or seizures was not associated with a particular gender or species (Fisher exact test, alpha=0.05). Seizures were more common in animals >3 years old, while PS-induced IEDs and seizures were more prevalent in P.h. anubis/cynocephalus crosses compared to P.h. anubis. In the asymptomatic controls, IEDs were recorded in five baboons (33%), and photoparoxysmal responses were observed in two (13%). Surface EEG is a sensitive and reliable instrument for characterizing the epilepsy encountered in Papio species. Electroclinically, the seizure animals had generalized epilepsy with photosensitivity. The variation in IED morphology may be age-related or it may reflect different epileptic phenotypes. Ketamine provoked IEDs and seizures in most seizure animals and only in a few asymptomatic baboons; therefore, it may enhance the sensitivity of surface EEG for detecting a predisposition to epilepsy.  相似文献   

11.
Maintenance of conditioning of 40-Hz EEG activity was investigated in six adults 1 to 3 years after they had experienced biofeedback training to increase 40-Hz EEG. Subjects were first retrained to alternately increase and suppress 40-Hz EEG. All six subjects achieved a preset performance criterion in 16–20 minutes. Five of these subjects also subsequently demonstrated significant control of 40-Hz EEG without feedback. The sixth subject did not demonstrate control after 76 minutes and four sessions of attempted retraining with feedback. Transfer of 40-Hz EEG control to a problem-solving task was tested in all subjects in a final session. Cognitive test items were presented and subjects were instructed to alternately increase and suppress 40-Hz EEG while solving the problems. Rates of 40-Hz EEG in suppression periods during problem solving were significantly greater than during suppression periods without problems. No significant differences in problem-solving performance were found comparing 40-Hz increase and suppression periods. This study supports previous research suggesting an association between 40-Hz EEG and mental activity, and suggests methods for further study of transfer of EEG biofeedback effects.  相似文献   

12.
In 53 children aged 3–14 years with temporal epilepsy, coherent analysis of the EEG was performed. Significant interhemispheric differences in coherence dependent on clinical manifestations of the disease were detected. In patients with epileptic seizures, a decrease in coherence on the side of the epileptic focus was recorded, which indicates destruction of the hemisphere. During clinical remission, the coherence on the side of the focus increased to values higher than in the contralateral, “healthy” hemisphere. It may be assumed that an increase in coherence against the background of clinical remission reflects the functioning of an antiepileptic system aimed at inhibiting the spread of the epileptic activity.  相似文献   

13.
Enhanced voluntary motor inhibition regularly accompanies conditioned increases in the sensorimotor rhythm (SMR), a 12--14-Hz Rolandic EEG rhythm in cats.A similar rhythm, presumably SMR, has also been identified in the human EEG. The clinical effectiveness of SMR operant conditioning has been claimed for epilepsy, insomnia, and hyperkinesis concurrent with seizure disorders. The present report attempts to follow up and replicate preliminary findings that suggested the technique's successful application to hyperkinesis uncomplicated by a history of epilepsy. SMR was defined as 12--14-Hz EEG activity in the absence of high-voltage slow-wave activity between 4 and 7 Hz. Anticipated treatment effects were indexed by systematic behavioral assessments of undirected motor activity and short attention span in the classroom. EEG and behavioral indices were monitored in four hyperkinetic children under the following six conditions: (1) No Drug, (2) Drug Only, (3) Drug and SMR Training I, (4) Drug and SMR Reversal Training, (5) Drug and SMR Training II, (6) No Drug and SMR Training. All hyperkinetic subjects were maintained on a constant drug regimen throughout the phases employing chemotherapy. Contingent increases and decreases in SMR occurred in three of four training subjects and were associated with similar changes in classroom assessments of motor inactivity. Combining medication and SMR training resulted in substantial improvements that exceeded the effects of drugs alone and were sustained with SMR training after medication was withdrawn. In contrast, these physiological and behavioral changes were absent in one highly distractible subject who failed to acquire the SMR task. Finally, pretraining levels of SMR accurately reflected both the seve-ity of original motor deficits and the susceptibility of hyperkinetic subjects to both treatments. Although the procedure clearly reduced hyperkinetic behavior, a salient, specific therapeutic factor could not be identified due to the dual EEG contingency imposed combined with associated changes in EMG. Despite these and other qualifying factors, the findings suggested the prognostic and diagnostic value of the SMR in the disorder when overactivity rather than distractibility is the predominant behavioral deficit.  相似文献   

14.
Although caffeine supplementation has a beneficial effect on people with neurological disorders, its implications for oxidative damage related to seizures are not well documented. Thus the aim of this study was to investigate the effects of two weeks caffeine supplementation (6 mg/kg; p.o.) on seizures and neurochemical alterations induced by pentylenetetrazol (PTZ 60 mg/kg i.p.). Statistical analyses showed that long-term rather than single dose caffeine administration decreased the duration of PTZ-induced seizures in adult male Wistar rats as recorded by cortical electroencephalographic (EEG) and behavioral analysis. The quantification of EEG recordings also revealed that caffeine supplementation protected against a wave increase induced by PTZ. Neurochemical analyses revealed that caffeine supplementation increased glutathione (GSH) content per se and protected against the increase in the levels of thiobarbituric acid reactive substances (TBARS) and oxidized diclorofluoresceine diacetate (DCFH-DA). Also, caffeine prevent the decrease in GSH content and Na+, K+-ATPase activity induced by PTZ. Our data also showed that the infusion of L-buthionine sulfoximine (BSO; 3.2 μmol/site i.c.v), an inhibitor of GSH synthesis, two days before injecting PTZ reversed the anticonvulsant effect caused by caffeine. BSO infusion also decreased GSH content and Na+, K+-ATPase activity. However, it increased DCFH-DA oxidation and TBARS per se and reversed the protective effect of caffeine. Results presented in this paper support the neuroprotective effects of low long-term caffeine exposure to epileptic damage and suggest that the increase in the cerebral GSH content caused by caffeine supplementation may provide a new therapeutic approach to the control of seizure.  相似文献   

15.
《IRBM》2019,40(6):320-331
An accurate epileptic seizure prediction algorithm can alleviate the problem and reduce risks in the life of a patient suffering from epilepsy. The main motive of this work is to propose a model which can predict seizures well in advance of its occurrence. Multivariate statistical process control (MSPC) has been used for seizure predictions in long-term scalp EEG signal. It has been observed that excessive neuronal activity in the preictal period of seizure changes the electrical characteristic from chaotic to rhythmic behavior. These changes have been utilized for prediction. Eight temporal based features are used for predicting the seizures by using multivariate statistical process control, which is widely known as an anomaly monitoring method. 90 seizures from the CHB-MIT EEG data of ten patients are analyzed.ResultThe results of the proposed method demonstrated that 80 seizures out of 90 in preictal period were correctly predicted prior to the seizure onset, thereby giving a sensitivity of 88.89%. The false positive rate is observed to 0.39 per hour.ConclusionThis study proposed a temporal based patient-specific epileptic seizure prediction method using MSPC in long-term scalp EEG signals. It also provides the possibility of realizing an EEG-based epileptic seizure prediction system which requires less computational power.SignificanceThe proposed method does not require preictal data for modeling. The extracted features are computationally easy. The tested result shows good accuracy on the CHB-MIT data base.  相似文献   

16.
Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs) in the electroencephalogram (EEG). SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external stimuli. It is largely considered that the paroxysmal synchronizations during the epileptic episode transiently render the thalamocortical system incapable of transmitting primary sensory information to the cortex. Here, we examined in young patients and in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established genetic model of absence epilepsy, how sensory inputs are processed in the related cortical areas during SWDs. In epileptic patients, visual event-related potentials (ERPs) were still present in the occipital EEG when the stimuli were delivered during seizures, with a significant increase in amplitude compared to interictal periods and a decrease in latency compared to that measured from non-epileptic subjects. Using simultaneous in vivo EEG and intracellular recordings from the primary somatosensory cortex of GAERS and non-epileptic rats, we found that ERPs and firing responses of related pyramidal neurons to whisker deflection were not significantly modified during SWDs. However, the intracellular subthreshold synaptic responses in somatosensory cortical neurons during seizures had larger amplitude compared to quiescent situations. These convergent findings from human patients and a rodent genetic model show the persistence of cortical responses to sensory stimulations during SWDs, indicating that the brain can still process external stimuli during absence seizures. They also demonstrate that the disruption of conscious perception during absences is not due to an obliteration of information transfer in the thalamocortical system. The possible mechanisms rendering the cortical operation ineffective for conscious perception are discussed, but their definite elucidation will require further investigations.  相似文献   

17.

Background

Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable.

Methodology

This study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching.

Principal Findings

We obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with 91.18% detection of spikes and 99.22% seizure detection.

Conclusion

We report a de novo EEG classification system for seizure and spike detection on multichannel EEG that includes physiology-based knowledge to enhance the performance of this type of system.  相似文献   

18.
We retrospectively evaluated a set of 205 children with autism and compared it to the partial sub-set of 71 (34.6%) children with a history of regression. From 71 children with regression, signs of epileptic processes were present in 43 (60.6%), 28 (65.12%) suffered clinical epileptic seizures, and 15 (34.9%) just had an epileptiform abnormality on the EEG. In our analysis, autistic regression is substantially more associated with epileptic process symptoms than in children with autism and no history of regression. More than 90% of children with a history of regression also show IQ < 70 and reduced functionality. Functionality and IQ further worsens with the occurrence of epileptic seizures (98% of children with regression and epilepsy have IQ < 70). We proved that low IQ and reduced functionality significantly correlate rather with epileptic seizures than just sub-clinical epileptiform abnormality on EEG. Clinical epileptic seizures associated with regression significantly influence the age of regression and its clinical type. The age of regression is higher compared to children with regression without epileptic seizures (in median: 35 months of age in patients with seizures while only 24 months in other patients). Patients with seizures revealed regression after 24th months of age in 68% of cases, while patients without seizures only in 27%. However, coincidence with epilepsy also increased the occurrence of regression before the 18th month of age (23% of patients), while only 4% of patients without epilepsy revealed regression before the 18th month. Epileptic seizures are significantly associated especially with behaviour regression rather than speech regression or regression in both behaviour and speech. Also epileptic seizures diagnosed before correct diagnosis of autism were significantly associated with delayed regression (both behavioural and speech regression).  相似文献   

19.
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.  相似文献   

20.
The use of monetary incentives to enhance the effects of electromyographic(EMG) feedback training was studied in five stabilized stroke patients with hemiplegia. The study was divided into Baseline, EMG Feedback Training, Feedback Training Plus Incentives, and Follow-Up treatment conditions. Integrated EMG activity was recorded simultaneously from the anterior tibialis and medial gastrocnemius muscles during relaxation and dorsiflexion of the affected foot. Patients were instructed to try to increase anterior tibialis EMG activity while decreasing EMG activity in the medial gastrocnemius. Range of motion was measured both prior to and immediately following the Baseline and Feedback Training conditions. Results suggested that(a) EMG feedback training produced greater EMG control and range of motion than did unassisted practice, and(b) the addition of monetary incentives may enhance the effects of feedback training, possibly through its effect on patient motivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号