共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
The isolated H(+)-ATPase from Escherichia coli (EF(0)F(1)) was investigated by electron microscopy of samples of negatively stained monodisperse molecules, followed by single-particle image processing. The resulting three-dimensional maps showed that the F(1)-part is connected by a prominent stalk to a more peripheral part of F(0). The F(1)-part showed stain-accessible cavities inside. In three-dimensional maps from selected particles, a second stalk could be detected which was thinner than the main stalk and is thought to correspond to the stator.Three-dimensional maps of the enzyme in the absence and in the presence of the substrate analogue adenyl-beta, gamma-imidodiphosphate (AMP-PNP) were calculated. Upon binding of AMP-PNP the three-dimensional maps showed no significant changes in the F(0)-part of EF(0)F(1), whereas a major conformational change in the F(1)-part was observed. (1) The diameter of the F(1)-part decreased upon binding of AMP-PNP mainly in the upper half of F(1). (2) Enzyme particles prepared in the presence of AMP-PNP had a pointed cap at the top of the F(1)-part which was missing in its absence. (3) The stain-accessible cavity inside the F(1)-part altered its pattern significantly. 相似文献
3.
The pH dependence of the reaction of dicyclohexylcarbodiimide with the essential aspartyl-61 residue in subunit c of Escherichia coli ATP synthase was compared in membranes and in a detergent dispersed preparation of the enzyme. The rate of reaction was estimated by measuring the inactivation of ATPase activity. The reaction with the detergent dispersed form of the enzyme proved to be pH sensitive with the essential aspartyl group titrating with a pK(a)=8. However, when measured with E. coli membranes, the reaction proved to be pH insensitive. The results suggest that the reacting aspartyl-61 residues are shielded from the bulk aqueous solvent when in the membrane, but then become aqueous-accessible following detergent solubilization. 相似文献
4.
R Birkenh?ger J C Greie K Altendorf G Deckers-Hebestreit 《European journal of biochemistry》1999,264(2):385-396
The antigenic determinants of mAbs against subunit c of the Escherichia coli ATP synthase were mapped by ELISA using overlapping synthetic heptapeptides. All epitopes recognized are located in the hydrophilic loop region and are as follows: 31-LGGKFLE-37, 35-FLEGAAR-41, 36-LEGAAR-41 and 36-LEGAARQ-42. Binding studies with membrane vesicles of different orientation revealed that all mAbs bind to everted membrane vesicles independent of the presence or absence of the F1 part. Although the hydrophilic region of subunit c and particularly the highly conserved residues A40, R41, Q42 and P43 are known to interact with subunits gamma and epsilon of the F1 part, the mAb molecules have no effect on the function of F0. Furthermore, it could be demonstrated that the F1 part and the mAb molecule(s) are bound simultaneously to the F0 complex suggesting that not all c subunits are involved in F1 interaction. From the results obtained, it can be concluded that this interaction is fixed, which means that subunits gamma and epsilon do not switch between the c subunits during catalysis and furthermore, a complete rotation of the subunit c oligomer modified with mAb(s) along the stator of the F1F0 complex, proposed to be composed of at least subunits b and delta, seems to be unlikely. 相似文献
5.
The proton-pumping NADH-quinone oxidoreductase from Escherichia coli houses nine iron-sulfur clusters, eight of which are found in its mitochondrial counterpart, complex I. The extra putative iron-sulfur cluster binding site with a CXXCXXXCX(27)C motif in the NuoG subunit has been assigned to ligate a [2Fe-2S] (N1c). However, we have shown previously that the Thermus thermophilus N1c fragment containing this motif ligates a [4Fe-4S] (Nakamaru-Ogiso, E., Yano, T., Ohnishi, T., and Yagi, T. (2002) J. Biol. Chem. 277, 1680-1688). In the current study, we individually inactivated four sets of the iron-sulfur binding motifs in the E. coli NuoG subunit by replacing all four ligands with Ala. Each mutant subunit, designated Delta N1b, Delta N1c, Delta N4, and Delta N5, was expressed as maltose-binding protein fusion proteins. After in vitro reconstitution, all mutant subunits were characterized by EPR. Although EPR signals from cluster N1b were not detected in any preparations, we detected two [4Fe-4S] EPR signals with g values of g(x,y,z) = 1.89, 1.94, and 2.06, and g(x,y,z) = 1.91, 1.94, and 2.05 at 6-20 K in wild type, Delta N1b, and Delta N5. The former signal was assigned to cluster N4, and the latter signal was assigned to cluster N1c because of their disappearance in Delta N4 and Delta N1c. Confirming that a [4Fe-4S] cluster ligates to the N1c motif, we propose to replace its misleading [2Fe-2S] name, N1c, with "cluster N7." In addition, because these mutations differently affected the assembly of peripheral subunits by in trans complementation analysis with the nuoG knock-out strain, the implicated structural importance of the iron-sulfur binding domains is discussed. 相似文献
6.
Summary Subunit III and c, the 8 kDa components of the chloroplast CF0, andE. coli H+ channel complexes respectively, were isolated and purified for the purpose of studying their Ca++-binding properties. Purified subunit III or c as well as the unfractionated organic-solvent soluble preparation from chloroplasts were used in a45Ca++-ligand blot assay known to detect high affinity Ca++-binding sites in proteins. Both subunit III and c showed strong45Ca++-binding. None of the other CF0 subunits bound Ca++ and of the CF1 only a weak binding was detected in the region of the , subunits. The Ca++-binding was inhibited after treating the proteins in solution by derivatizing aqueously exposed carboxyl groups with a water soluble carbodiimide plus a nucleophile, after de-formylation of the N-terminal methionine, or with a subsequent treatment with La3+. Dicyclohexylcarbodiimide treatment (no nucleophile was added) of thylakoid membranes, which derivatizes the hydrophobically located Glu 61 (Asp 61 inE. coli), did not inhibit the Ca++-binding in either protein. The data indicate that for both proteins the carbonyl group of the formylated N-terminal Met-1 and probably the carboxyl group of the subunit III (or c) C-terminal provide some of seven essential oxygen ligands normally required for defining a Ca++-binding site in proteins. Based on the accepted models for the hairpin conformation of the subunit III (c), it seems clear that the Ca++-binding site can form on the lumenal side of the membrane in the functional CF0 structures or on the periplasmic side of theE. coli membrane. A working hypothesis we are testing is that Ca++-binding to the CF0 (or F0) can form an easily reversible gating site such as to enhance the probability for membrane-localized H+ gradients being coupled to ATP formation under moderate energization loads, but under excess energization the local H+ ion concentration may build up high enough to displace the bound Ca++, resulting in delocalization of the H+ gradient. The latter situation seems, in chloroplasts at least, to function as a signal for over-energization; i.e., excess light absorption, a potential stress situation for plants. Lumenal acidification appears to be a trigger for initiating stress alleviation responses.On leave from the Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Puschchino, Russia. 相似文献
7.
8.
G Deckers-Hebestreit K Steffens K Altendorf 《The Journal of biological chemistry》1986,261(32):14878-14881
Subunit c of the membrane-integrated, proton-translocating F0 portion of the ATP synthase (F1F0) from Escherichia coli has been isolated under nondenaturing conditions (Schneider, E., and Altendorf, K. (1985) EMBO J. 4, 515-518) and antibodies have been raised in rabbits. The primary antisera did not recognize the antigen when present in the same buffer as used for the immunization. Surprisingly, in one of the three antisera a strong antibody binding was observed when intact F0, a.c complex or reconstituted subunit c was provided as the antigen. Incorporation of subunit c into liposomes together with subunits a and b forming an active, H+-translocating complex was not required for the recognition by the antiserum. Subunit c prepared by chloroform/methanol extraction or by chromatography in the presence of sodium dodecyl sulfate was not recognized by the anti-c antiserum when incorporated into liposomes. 相似文献
9.
Escherichia coli inner membrane proteins (IMPs) use different pathways for targeting and membrane integration. We have examined the biogenesis of the F1F0 ATP synthase subunit c, a small double spanning IMP, using complementary in vivo and in vitro approaches. The data suggest that F0c is targeted by the SRP to the membrane, where it inserts at YidC in a Sec-independent mechanism. F0c appears to be the first natural substrate of this novel pathway. 相似文献
10.
Dicyclohexylcarbodiimide (DCCD) inhibits the activity of the F1F0-H+ ATP synthase of Escherichia coli by reacting with aspartyl 61 in subunit c of the FO sector to form a stable N-acylurea. The segment of chromosomal DNA which codes the subunits of the FO was cloned from four independently isolated DCCD-resistant mutants, and the sequence of the subunit c gene (uncE) was determined. An Ala24 to serine (A24S) substitution was found in the subunit c gene of each mutant. The A24S uncE gene was cloned into the BamHI site of a mutant derivative of plasmid pBR322. The A24S subunit c conferred DCCD resistance to a variety of recipient E. coli strains when it was overexpressed from this plasmid. A 7-base pair deletion beginning at position 132 of the plasmid vector was responsible for the observed overexpression. Hoppe et al. (Hoppe, J., Schairer, H. U., and Sebald, W. (1980) Eur. J. Biochem. 112, 17-24) had previously shown that mutation of subunit c Ile28 to threonine or valine resulted in DCCD resistance. The DCCD sensitivities of the membrane ATPase of these mutants and the A24S mutant were compared. DCCD sensitivity decreased in the order: wild-type much greater than I27V greater than I28T = A24S. The venturicidin sensitivities of wild-type and mutant membranes were also examined. The membrane ATPase of the I28T and I28V mutants was venturicidin resistant whereas the A24S substitution resulted in a hypersensitivity to inhibition by venturicidin. These results support a model in which subunit c folds in the membrane like a hairpin, where the region of residues 24-28 in transmembrane helix-1 is close to that of aspartyl 61 in transmembrane helix-2. 相似文献
11.
Mutations in the conserved proline 43 residue of the uncE protein (subunit c) of Escherichia coli F1F0-ATPase alter the coupling of F1 to F0 总被引:3,自引:0,他引:3
M J Miller D Fraga C R Paule R H Fillingame 《The Journal of biological chemistry》1989,264(1):305-311
The conserved Pro43 residue of the uncE protein (subunit c) of the Escherichia coli F1F0-ATPase was changed to Ser or Ala by oligonucleotide-directed mutagenesis, and the mutations were incorporated into the chromosome. The resultant mutant strains were capable of oxidative phosphorylation as indicated by their ability to grow on succinate and had growth yields on glucose that were 80-90% of wild type. Membrane vesicles from the mutants were slightly less efficient than wild type vesicles in ATP-driven proton pumping as indicated by ATP-dependent quenching of quinacrine fluorescence. The decreased quenching response was not due to increased H+ leakiness of the mutant membranes or to loss of F1-ATPase activity from the membrane. These results indicate that the mutant F1F0-ATPases are defective in coupling ATP hydrolysis to H+ translocation. The membrane ATPase activity of the mutants was inhibited less by dicyclohexylcarbodiimide than that of wild type. The decrease in sensitivity to inhibition by dicyclohexylcarbodiimide was caused primarily by dissociation of the F1-ATPase from the mutant F0 in the ATPase assay mixture. These results support the idea that Pro43, and neighboring conserved polar residues play an important role in the binding and functional coupling of F1 to F0. Although a Pro residue is found at position 43 in all species of subunit c studied, surprisingly, it is not absolutely essential to function. 相似文献
12.
13.
McGeoch JE McGeoch MW Mao R Guidotti G 《Biochemical and biophysical research communications》2000,274(3):835-840
Subunit c of ATP synthase can be purified from neuronal plasma membrane and from the inner mitochondrial membrane. In the latter location the hydrophobic 75 amino acid protein is one component of the F(1) F(0) ATP synthase complex but in the former it is alone as a pore that is capable of generating spontaneous electrical oscillations. Pure mammalian subunit c when reconstituted in lipid bilayers and voltage clamped, yields a voltage sensitive pore that conducts a cation current regulated by calcium. The current is here found to be activated by cGMP with a K(M) ranging from 14 nM to 19 microM depending on calcium and temperature. It is sensitively inhibited by a number of ligands. The K(I) for calcium ranges from 100 nM to 100 microM depending on cGMP and temperature. DCCD inhibits with a K(app) of 100 nM. The polyamine nicotine inhibits at 84 nM. The pore has properties that would allow it to deliver sodium or calcium through the cell membrane in a controlled manner while maintaining membrane polarization. 相似文献
14.
Revington M Dunn SD Shaw GS 《Protein science : a publication of the Protein Society》2002,11(5):1227-1238
The F(1)F(0) ATP synthase is a reversible molecular motor that employs a rotary catalytic cycle to couple a chemiosmotic membrane potential to the formation/hydrolysis of ATP. The multisubunit enzyme contains two copies of the b subunit that form a homodimer as part of a narrow, peripheral stalk structure that connects the membrane (F(0)) and soluble (F(1)) sectors. The three-dimensional structure of the b subunit is unknown making the nature of any interactions or conformational changes within the F(1)F(0) complex difficult to interpret. We have used circular dichroism and analytical ultracentrifugation analyses of a series of N- and C-terminal truncated b proteins to investigate its stability and structure. Thermal denaturation of the b constructs exhibited distinct two-state, cooperative unfolding with T(m) values between 30 and 40 degrees C. CD spectra for the region comprising residues 53-122 (b(53-122)) showed theta;(222)/theta;(208) = 0.99, which reduced to 0.92 in the presence of the hydrophobic solvent trifluoroethanol. Thermodynamic parameters for b(53-122) (DeltaG, DeltaH and DeltaC(p)) were similar to those reported for several nonideal, coiled-coil proteins. Together these results are most consistent with a noncanonical and unstable parallel coiled-coil at the interface of the b dimer. 相似文献
15.
The binding site of the delta subunit in the F(1)F(0)-ATPsynthase from Escherichia coli has been determined by electron microscopy of negatively stained, antibody-decorated enzyme molecules. The images show that the antibody is bound at the very top of the F(1) domain indicating that at least part of delta is bound in the dimple formed by the N termini of the alpha and beta subunits. The data may explain why there is only one binding site for delta on the F(1) despite there being three identical alphabeta pairs. The finding also implies that the b subunits of the F(0) have to extend all the way from the membrane surface to the very top of the F(1) domain to make contact with the delta subunit. 相似文献
16.
Previously, we generated genetically fused dimers and trimers of subunit c of the Escherichia coli ATP synthase based upon the precedent of naturally occurring dimers in V-type H(+)-transporting ATPases. The c(2) and c(3) oligomers have proven useful in testing hypothesis regarding the mechanism of energy coupling. In the first part of this paper, the uncoupling Q42E substitution has been introduced into the second loop of the c(2) dimer or the third loop of the c(3) trimer. Both mutant proteins proved to be as functional as the wild type c(2) dimer or wild type c(3) trimer. The results argue against an obligatory movement of the epsilon subunit between loops of monomeric subunit c in the c(12) oligomer during rotary catalysis. Rather, the results support the hypothesis that the c-epsilon connection remains fixed as the c-oligomer rotates. In the second section of this paper, we report on the effect of substitution of the proton translocating Asp(61) in every second helical hairpin of the c(2) dimer, or in every third hairpin of the c(3) trimer. Based upon the precedent of V-type ATPases, where the c(2) dimer occurs naturally with a single proton translocating carboxyl in every second hairpin, these modified versions of the E. coli c(2) and c(3) fused proteins were predicted to have a functional H(+)-transporting ATPase activity, with a reduced H(+)/ATP stoichiometry, but to be inactive as ATP synthases. A variety of Asp(61)-substituted proteins proved to lack either activity indicating that the switch in function in V-type ATPases is a consequence of more than a single substitution. 相似文献
17.
Kol S Turrell BR de Keyzer J van der Laan M Nouwen N Driessen AJ 《The Journal of biological chemistry》2006,281(40):29762-29768
YidC is a member of the OxaI family of membrane proteins that has been implicated in the membrane insertion of inner membrane proteins in Escherichia coli. We have recently demonstrated that proteoliposomes containing only YidC support both the stable membrane insertion and the oligomerization of the c subunit of the F(1)F(0) ATP synthase (F(0)c). Here we have shown that two mutants of F(0)c unable to form a functional F(1)F(0) ATPase interact with YidC, require YidC for membrane insertion, but fail to oligomerize. These data show that oligomerization is not essential for the stable YidC-dependent membrane insertion of F(0)c consistent with a function of YidC as a membrane protein insertase. 相似文献
18.
M Komatsu-Takaki 《The Journal of biological chemistry》1989,264(30):17750-17753
Incubation of spinach chloroplast thylakoids with pyridoxal 5'-phosphate modified the epsilon subunit of ATP synthase (CF0CF1). Illumination of thylakoids stimulated the modification of one specific amino acid residue of the epsilon subunit by a factor of 3. Endoproteinase Glu-C treatment of the isolated epsilon subunit and fractionation of the peptides by high performance liquid chromatography revealed a major fluorescent peptide with the sequence GKRQKIE. Further treatment of this peptide with endoproteinase Arg-C gave a strongly fluorescent tripeptide (GXR). From the primary structure of the epsilon subunit, the specifically modified residue was deduced to be Lys-109. This suggests the energy-dependent conformational changes in the epsilon subunit which change the surroundings of Lys-109 and alter the reactivity of this residue. 相似文献
19.
M Revington D T McLachlin G S Shaw S D Dunn 《The Journal of biological chemistry》1999,274(43):31094-31101
In this study a series of N- and/or C-terminal truncations of the cytoplasmic domain of the b subunit of the Escherichia coli F(1)F(0) ATP synthase were tested for their ability to form dimers using sedimentation equilibrium ultracentrifugation. The deletion of residues between positions 53 and 122 resulted in a strongly decreased tendency to form dimers, whereas all the polypeptides that included that sequence exhibited high levels of dimer formation. b dimers existed in a reversible monomer-dimer equilibrium and when mixed with other b truncations formed heterodimers efficiently, provided both constructs included the 53-122 sequence. Sedimentation velocity and (15)N NMR relaxation measurements indicated that the dimerization region is highly extended in solution, consistent with an elongated second stalk structure. A cysteine introduced at position 105 was found to readily form intersubunit disulfides, whereas other single cysteines at positions 103-110 failed to form disulfides either with the identical mutant or when mixed with the other 103-110 cysteine mutants. These studies establish that the b subunit dimer depends on interactions that occur between residues in the 53-122 sequence and that the two subunits are oriented in a highly specific manner at the dimer interface. 相似文献
20.
Dicyclohexylcarbodiimide (DCCD) specifically inhibits the F1F0-H+-ATP synthase complex of Escherichia coli by covalently modifying a proteolipid subunit that is embedded in the membrane. Multiple copies of the DCCD-reactive protein, also known as subunit c, are found in the F1F0 complex. In order to determine the minimum stoichiometry of reaction, we have treated E. coli membranes with DCCD, at varying concentrations and for varying times, and correlated inhibition of ATPase activity with the degree of modification of subunit c. Subunit c was purified from the membrane, and the degree of modification was determined by two methods. In the "specific radioactivity" method, the moles of [14C]DCCD per total mole of subunit c was calculated from the radioactivity incorporated per mg of protein, and conversion of mg of protein to mol of protein based upon amino acid analysis. In the "high performance liquid chromatography (HPLC) peak area" method, the DCCD-modified subunit c was separated from unmodified subunit c on an anion exchange AX300 HPLC column, and the areas of the peaks from the chromatogram quantitated. The shape of the modification versus inhibition curve indicated that modification of a single subunit c per F0 was sufficient to abolish ATPase activity. The titration data were fit by nonlinear regression analysis to a single hit mathematical model, A = Un(1 - r) + r, where A is the relative activity, U is the ratio of unmodified/total subunit c, n is the number of subunit c per F0, and r is a residual fraction of ATPase activity that was resistant to inhibition by DCCD. The two methods gave values for n equal to 10 by the specific radioactivity method and 14 by the HPLC peak area method, and values for r of 0.28 and 0.30, respectively. Most of the r value was accounted for by the observed dissociation of 15-20% of the F1-ATPase from the membrane under ATPase assay conditions. When the minimal, experimentally justified value of r = 0.15 was used in the equation above, the calculated values of n were reduced to 8 and 11, respectively. The value of n determined here, with a probable range of uncertainty of 8-14, is consistent with, and provides an independent type of experimental support for, the suggested stoichiometry of 10 +/- 1 subunit c per F1F0, which was determined by a more precise radiolabeling method (Foster, D. L., and Fillingame, R. H. (1982) J. Biol. Chem. 257, 2009-2015). 相似文献