首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Salt tolerance of plants depends on HKT transporters (High-affinityK+ Transporter), which mediate Na+-specific transport or Na+-K+co-transport. Gene sequences closely related to rice HKT geneswere isolated from hexaploid bread wheat (Triticum aestivum)or barley (Hordeum vulgare) for genomic DNA southern hybridizationanalysis. HKT gene sequences were mapped on chromosomal armsof wheat and barley using wheat chromosome substitution linesand barley–wheat chromosome addition lines. In addition,HKT gene members in the wild diploid wheat ancestors, T. monococcum(Am genome), T. urartu (Au genome), and Ae. tauschii (Dt genome)were investigated. Variation in copy number for individual HKTgene members was observed between the barley, wheat, and ricegenomes, and between the different wheat genomes. HKT2;1/2-like,HKT2;3/4-like, HKT1;1/2-like, HKT1;3-like, HKT1;4-like, andHKT1;5-like genes were mapped to the wheat–barley chromosomegroups 7, 7, 2, 6, 2, and 4, respectively. Chromosomal regionscontaining HKT genes were syntenic between wheat and rice exceptfor the chromosome regions containing the HKT1;5-like gene.Potential roles of HKT genes in Na+ transport in rice, wheat,and barley are discussed. Determination of the chromosome locationsof HKT genes provides a framework for future physiological andgenetic studies investigating the relationships between HKTgenes and salt tolerance in wheat and barley. Key words: Barley, comparative mapping, HKT, rice, salt tolerance, sodium transport, wheat  相似文献   

2.
3.
The heritability of sodium and potassium transport to the xylem was measured by the regression of Fn+1, on Fn means in two segregating breeding populations of rice (Oryza sativa L.). The narrow-sense heritabilities of shoot sodium concentration were 0.42 and 0.43 in the two populations, respectively, and the corresponding values for the heritability of shoot potassium concentration were 0.46 and 0.52. The sodium: potassium ratio was apparently heritable (0.36 and 0.40) because it was regressed positively on sodium concentration and negatively on potassium concentration. There was no significant relationship between the shoot sodium and potassium concentrations themselves. It is concluded that sodium and potassium uptake in rice are controlled by different genes which segregate independently. The magnitude of the transpirational bypass flow was estimated to be some 10 times greater in rice than in wheat (Triticum aestivum L.) and was found to be highly correlated with sodium uptake in rice but not in wheat. It is concluded that the bypass flow provides an additional pathway for sodium uptake in rice and that this accounts for the functional and genetic independence of sodium and potassium uptake in rice and consequently for the lesser prominence of potassium:sodium discrimination in rice than in wheat.  相似文献   

4.
We have investigated OsHKT2;1 natural variation in a collection of 49 cultivars with different levels of salt tolerance and geographical origins. The effect of identified polymorphism on OsHKT2;1 activity was analysed through heterologous expression of variants in Xenopus oocytes. OsHKT2;1 appeared to be a highly conserved protein with only five possible amino acid substitutions that have no substantial effect on functional properties. Our study, however, also identified a new HKT isoform, No-OsHKT2;2/1 in Nona Bokra, a highly salt-tolerant cultivar. No-OsHKT2;2/1 probably originated from a deletion in chromosome 6, producing a chimeric gene. Its 5' region corresponds to that of OsHKT2;2, whose full-length sequence is not present in Nipponbare but has been identified in Pokkali, a salt-tolerant rice cultivar. Its 3' region corresponds to that of OsHKT2;1. No-OsHKT2;2/1 is essentially expressed in roots and displays a significant level of expression at high Na(+) concentrations, in contrast to OsHKT2;1. Expressed in Xenopus oocytes or in Saccharomyces cerevisiae, No-OsHKT2;2/1 exhibited a strong permeability to Na(+) and K(+) , even at high external Na(+) concentrations, like OsHKT2;2, and in contrast to OsHKT2;1. Our results suggest that No-OsHKT2;2/1 can contribute to Nona Bokra salt tolerance by enabling root K(+) uptake under saline conditions.  相似文献   

5.
Na+ influx and efflux in Neurospora crassa RL21a can be studied separately to calculate net Na+ movements. In the absence of external K+, Na+ influx was independent of the K+ content of the cells, but when K+ was present, the inhibition of Na+ influx by external K+ was higher the higher the K+ content. Efflux depended on the K+ and Na+ content, and on the history of the cells. Efflux was higher the higher the Na+ and K+ contents, and, in low-K+ cells, the efflux was also higher in cells grown in the presence of Na+ than when Na+ was given to cells grown in the absence of Na+. Addition of K+ to cells in steady state with external Na+ resulted in a net Na+-loss. In cells grown without Na+ this loss was a consequence of the inhibition of Na+ influx. In Na+-grown cells, addition of K+ inhibited Na+ influx and increased Na+ efflux.  相似文献   

6.
Phosphorus(P) is a major plant nutrient and developing crops with higher P-use efficiency is an important breeding goal.In this context we have conducted a comparative study of irrigated and rainfed rice varieties to assess genotypic differences in colonization with arbuscular mycorrhizal(AM) fungi and expression of different P transporter genes.Plants were grown in three different soil samples from a rice farm in the Philippines.The data show that AM symbiosis in all varieties was established after 4 weeks of growth under aerobic conditions and that,in soil derived from a rice paddy,natural AM populations recovered within6 weeks.The analysis of AM marker genes(AM1,AM3,AM14) and P transporter genes for the direct Pi uptake(PT2,PT6) and AM-mediated pathway(PT11,PT13) were largely in agreement with the observed root AM colonization providing a useful tool for diversity studies.Interestingly,delayed AM colonization was observed in the aus-type rice varieties which might be due to their different root structure and might confer an advantage for weed competition in the field.The data further showed that P-starvation induced root growth and expression of the high-affinity P transporter PT6 was highest in the irrigated variety IR66 which also maintained grain yield under P-deficient field conditions.  相似文献   

7.
The NHX‐type cation/H+ transporters in plants have been shown to mediate Na+(K+)/H+ exchange for salinity tolerance and K+ homoeostasis. In this study, we identified and characterized two NHX homologues, HtNHX1 and HtNHX2 from an infertile and salinity tolerant species Helianthus tuberosus (cv. Nanyu No. 1). HtNHX1 and HtNHX2 share identical 5′‐ and 3′‐UTR and coding regions, except for a 342‐bp segment encoding 114 amino acids (L272 to Q385) which is absent in HtNHX2. Both hydroponics and soil culture experiments showed that the expression of HtNHX1 or HtNHX2 improved the rice tolerance to salinity. Expression of HtNHX2, but not HtNHX1, increased rice grain yield, harvest index, total nutrient uptake under K+‐limited salt‐stress or general nutrient deficiency conditions. The results provide a novel insight into NHX function in plant mineral nutrition.  相似文献   

8.
It is thought that Na+ and K+ homeostasis is crucial for salt-tolerance in plants. To better understand the Na+ and K+ homeostasis in important crop rice (Oryza sativa L.), a cDNA homologous to the wheat HKT1 encoding K+-Na+ symporter was isolated from japonica rice, cv Nipponbare (Ni-OsHKT1). We also isolated two cDNAs homologous to Ni-OsHKT1 from salt-tolerant indica rice, cv Pokkali (Po-OsHKT1, Po-OsHKT2). The predicted amino acid sequence of Ni-OsHKT1 shares 100% identity with Po-OsHKT1 and 91% identity with Po-OsHKT2, and they are 66-67% identical to wheat HKT1. Low-K+ conditions (less than 3 mM) induced the expression of all three OsHKT genes in roots, but mRNA accumulation was inhibited by the presence of 30 mM Na+. We further characterized the ion-transport properties of OsHKT1 and OsHKT2 using an expression system in the heterologous cells, yeast and Xenopus oocytes. OsHKT2 was capable of completely rescuing a K+-uptake deficiency mutation in yeast, whereas OsHKT1 was not under K+-limiting conditions. When OsHKTs were expressed in Na+-sensitive yeast, OsHKT1 rendered the cells more Na+-sensitive than did OsHKT2 in high NaCl conditions. The electrophysiological experiments for OsHKT1 expressed in Xenopus oocytes revealed that external Na+, but not K+, shifted the reversal potential toward depolarization. In contrast, for OsHKT2 either Na+ or K+ in the external solution shifted the reversal potential toward depolarization under the mixed Na+ and K+ containing solutions. These results suggest that two isoforms of HKT transporters, a Na+ transporter (OsHKT1) and a Na+- and K+-coupled transporter (OsHKT2), may act harmoniously in the salt tolerant indica rice.  相似文献   

9.
The cDNAs CnHAK1 and CnHAK2, encoding K+ transporters, were amplified from the leaves of the seagrass Cymodocea nodosa. None of these transporters suppressed the K+ deficiency of a Saccharomyces cerevisiae mutant, but both suppressed the equivalent defect of an Escherichia coli mutant. Overexpression of the transporter CnHAK1, but not CnHAK2, mediated very rapid K+ or Rb+ influxes in the E. coli mutant. The concentration dependence of these influxes demonstrated that CnHAK1 is a low-affinity K+ transporter, which does not discriminate between K+ and Rb+. CnHAK1 expressed in E. coli worked in reverse when the external K+ concentrations were low, and we established the condition of a simple functional test of K+ loss for transporters of the Kup-HAK family. In comparison with its homologue barley transporter HvHAK2, CnHAK1 was insensitive to Na+.  相似文献   

10.
The xylem is a long‐distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic inter‐relations between structural and functional features of the xylem. Taken together the xylem is designed to prevent cavitation (entry of air bubbles), induced by negative pressures under transpiration and to repair the cavitated vessels. Half‐bordered pits between xylem parenchyma cells and xylem vessels are on the one hand the gates to the vessels but on the other hand a serious ‘bottle‐neck’ for transport. Hence it becomes evident that special transport systems exist at the interface between the cells and vessels, which allow intensive fluxes of ions and water to and out of the xylem. The molecular identification and biophysical/biochemical characterization of these transporters has just started. Paradigms for the sophisticated mechanism of controlled xylem transport under changing environmental conditions are SKOR, a Shaker‐like channel involved in K+‐loading and SOS1, a Na+/H+ antiporter with a proposed dual function in Na+ transport. In view of the importance of plant water relations it is not surprising to find that water channels dominate the gate of access to xylem. Future studies will focus on the mechanism(s) that regulate water channels and ion transporters and on their physiological role in, for example, the repair of embolism. Clearly, progress in this specific field of research will greatly benefit from an integration of molecular and biophysical techniques aimed to understand ‘whole‐plant’ behaviour under the ever‐changing environmental conditions in the daily life of all plants.  相似文献   

11.
Potassium is an essential macronutrient in higher plants. It plays an important physiological role in stoma movements, osmoregulation, enzyme activation and cell expansion. The demand for potassium can be substantial, especially when the plant concerned is a Eucalyptus tree in excess of 50 m tall. We have isolated two cDNAs, EcHKT1 and EcHKT2, from Eucalyptus camaldulensis (river red gum) which are expressed in leaves, stems and roots. These encode potassium transporter polypeptides with homology to the wheat K+-Na+ symporter, HKT1. EcHKT1 and EcHKT2 both complemented the K+-limited growth of an Escherichia coli K+-uptake-deficient triple mutant. EcHKT1 and EcHKT2also mediated Na+ and K+ uptake when expressed in Xenopus oocytes. A comparison of the EcHKT1 and EcHKT2 sequences and their transport properties indicated that these cDNAs represent two K+ transporters with distinct functional characteristics. The functional and structural conservation between these two E. camaldulensis genes and the wheat HKT1 suggests that they play an important, albeit elusive, physiological role.  相似文献   

12.
As rice can use both nitrate (NO3-) and ammonium (NH4+), we have tested the hypothesis that the shift in the pattern of cultivars grown in Jiangsu Province reflects the ability of the plants to exploit NO3- as a nitrogen (N) source. Four rice cultivars were grown in solution culture for comparison of their growth on NO3- and NH4+ nitrogen sources. All four types of rice,Xian You 63 (XY63), Yang Dao 6 (YD), Nong Keng 57 (NK) and Si You 917 (SY917), grew well and produced similar amounts of shoot biomass with 1 mmol/L NH4+ as the only N source.However, the roots of NK were significantly smaller in comparison with the other cultivars. When supplied with 1 mmol/L NO3-, YD produced the greatest biomass; while NK achieved the lowest growth among the four cultivars. Electrophysiological measurements on root rhizodermal cells showed that the NO3--elicited changes in membrane potential (ΔEm) of these four rice cultivars were significantly different when exposed to low external NO3- (<1 mmol/L); while they were very similar at high external NO3- (10 mmol/L). The root cell membrane potentials of YD and XY63 were more responsive to low external NO3- than those of NK and SY917. The ΔEm values for YD and XY63 rhizodermal cells were almost the same at both 0.1 mmol/L and 1 mmol/L NO3-;while for the NK and SY917 the values became larger as the external NO3- increased. For YD cultivar, ΔEm was measured over a range of NO3- concentrations and a Michaelis-Menten fit to the data gave a Km value of 0.17 mmol/L. Net NO3- uptake depletion kinetics were also compared and for some cultivars (YD and XY63) a single-phase uptake system with first order kinetics best fitted the data; while other cultivars (ND and SY917) showed a better fit to two uptake systems. These uptake systems had two affinity ranges: one had a similar Km in all the cultivars (0.2 mmol/L); the other much higher affinity system (0.03 mmol/L) was only present in NK and SY917. The expression pattern of twelve different NO3- transporter genes was tested using specific primers, but only OsNRT1.1 and OsNRT2. 1 expression could be detected showing significant differences between the four rice cultivars. The results from both the physiological and molecular experiments do provide some support for the hypothesis that the more popular rice cultivars grown in Jiangsu Province may be better at using NO3- as an N source.  相似文献   

13.
14.
As rice can use both nitrate (NO3-) and ammonium (NH4+), we have tested the hypothesis that the shift in the pattern of cultivars grown in Jiangsu Province reflects the ability of the plants to exploit NO3- as a nitrogen (N) source. Four rice cultivars were grown in solution culture for comparison of their growth on NO3- and NH4+ nitrogen sources. All four types of rice, Xian You 63 (XY63), Yang Dao 6 (YD), Nong Keng 57 (NK) and Si You 917 (SY917), grew well and produced similar amounts of shoot biomass with 1 mmol/L NH4+ as the only N source. However, the roots of NK were significantly smaller in comparison with the other cultivars. When supplied with 1 mmol/L NO3- YD produced the greatest biomass; while NK achieved the lowest growth among the four cultivars. Electrophysiological measurements on root rhizodermal cells showed that the NO3- elicited changes in membrane potential (△Em) of these four rice cultivars were significantly different when exposed to low external NO3- (<1 mmol/L); while they were very similar at high external NO3- (10 mmol/L). The root cell membrane potentials of YD and XY63 were more responsive to low external NO3- than those of NK and SY917. The△Em values for YD and XY63 rhizodermal cells were almost the same at both 0.1 mmol/L and 1 mmol/L NO3-; while for the NK and SY917 the values became larger as the external NO3- increased. For YD cultivar,△Em was measured over a range of NO3- concentrations and a Michaelis-Menten fit to the data gave a Km value of 0.17 mmol/L. Net NO3- uptake depletion kinetics were also compared and for some cultivars (YD and XY63) a single-phase uptake system with first order kinetics best fitted the data; while other cultivars (ND and SY917) showed a better fit to two uptake systems. These uptake systems had two affinity ranges: one had a similar Km in all the cultivars (0.2 mmol/L); the other much higher affinity system (0.03 mmol/L) was only present in NK and SY917. The expression pattern of twelve different NO3- transporter genes was tested using specific primers, but only OsNRT1.1 and OsNRT2.1 expression could be detected showing significant differences between the four rice cultivars. The results from both the physiological and molecular experiments do provide some support for the hypothesis that the more popular rice cultivars grown in Jiangsu Province may be better at using NO3- as an N source.  相似文献   

15.
盐害是限制植物生长发育的重要环境因素, 对植物造成渗透胁迫和离子毒害。维持细胞及整株水平的Na+/K+平衡是植物重要的耐盐机制。目前, 已报道的高亲和性钾离子转运蛋白(HKT)具有钠、钾离子转运特性, 在植物体钠、钾离子长距离运输及分配过程中发挥重要作用。该文重点总结了淡土植物和盐土植物HKT蛋白的结构、功能及耐盐机理, 并对其在植物耐盐改良育种中的前景做出了展望。  相似文献   

16.
17.
A plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4‐overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild‐type plants following salt stress. We show higher HKT1;1 expression in abi4 mutant plants and lower levels of expression in ABI4‐overexpressing plants, resulting in reduced accumulation of sodium ions in the shoot of abi4 mutants. HKT1;1 encodes a sodium transporter which is known to unload sodium ions from the root xylem stream into the xylem parenchyma stele cells. We have shown recently that ABI4 is expressed in the root stele at various developmental stages and that it plays a key role in determining root architecture. Thus ABI4 and HKT1;1 are expressed in the same cells, which suggests the possibility of direct binding of ABI4 to the HKT1;1 promoter. In planta chromatin immunoprecipitation and in vitro electrophoresis mobility shift assays demonstrated that ABI4 binds two highly related sites within the HKT1;1 promoter. These sites, GC(C/G)GCTT(T), termed ABI4‐binding element (ABE), have also been identified in other ABI4‐repressed genes. We therefore suggest that ABI4 is a major modulator of root development and function.  相似文献   

18.
A. R. Yeo 《Plant and Soil》1992,146(1-2):109-116
Sodium transport in rice is characterised by large variability between individual plants, and large environmental interaction. As a result of these two factors, plant sodium content is a continuous variable which is not distributed normally. This applies both to the quantity of sodium in the plant and to the concentration of sodium on a unit fresh or dry weight basis. This variability is in part because the transpirational by-pass flow, dependent upon root anatomy and development, contributes to sodium uptake. Variability in sodium content within designated cultivars is heritable and line selections diverge during recurrent selection, suggesting that selection is working on residual heterozygosity rather than on a family of homozygous lines. Varieties differ in average sodium uptake into the plant but the direct correlation of this with survival is weak. This is because other independent characters are important (and these have not been combined by natural selection nor by chance) and because overall performance is confounded by the spurious advantage of the tall (non-dwarf) plant type. This advantage is spurious because much of it is due to plant size rather than to any genetic information for salt tolerance. The benefit deriving from plant size will not be heritable in crosses with genotypes of the improved (dwarf), high-yielding plant type because the dwarfing genes are dominant. Sodium transport is heritable in crosses, and the results presented show that both low sodium transport and low sodium to potassium ratio can be selected independently of plant type. This allows the selection of dwarf plants (which are agronomically desirable) with low sodium transport (which will improve salt tolerance).  相似文献   

19.
Plant phosphate (Pi) transporters mediate the uptake and translocation of this nutrient within plants. A total of 13 sequences in the rice ( Oryza sativa ) genome can be identified as belonging to the Pi transporter (Pht1) family. Here, we report on the expression patterns, biological properties and the physiological roles of two members of the family: OsPht1;2 ( OsPT2 ) and OsPht1;6 ( OsPT6 ). Expression of both genes increased significantly under Pi deprivation in roots and shoots. By using transgenic rice plants expressing the GUS reporter gene, driven by their promoters, we detected that OsPT2 was localized exclusively in the stele of primary and lateral roots, whereas OsPT6 was expressed in both epidermal and cortical cells of the younger primary and lateral roots. OsPT6, but not OsPT2, was able to complement a yeast Pi uptake mutant in the high-affinity concentration range. Xenopus oocytes injected with OsPT2 mRNA showed increased Pi accumulation and a Pi-elicited depolarization of the cell membrane electrical potential, when supplied with mM external concentrations. Both results show that OsPT2 mediated the uptake of Pi in oocytes. In transgenic rice, the knock-down of either OsPT2 or OsPT6 expression by RNA interference significantly decreased both the uptake and the long-distance transport of Pi from roots to shoots. Taken together, these data suggest OsPT6 plays a broad role in Pi uptake and translocation throughout the plant, whereas OsPT2 is a low-affinity Pi transporter, and functions in translocation of the stored Pi in the plant.  相似文献   

20.
Sodium relations in Chenopodiaceae: a comparative approach   总被引:2,自引:0,他引:2  
Sodium relations of 15 species of Chenopodiaceae were studied in seedlings grown on quartz sand at 10 mol m?3 of sodium and potassium. Uptake of sodium and potassium into whole plants and shoots was followed over 2 weeks. High alkali ion uptake rates were found in all species. The apparent selectivity of alkali ion uptake showed a continuous variation between species, from nearly perfect sodium exclusion to negligible cation selection. K/Na ratios above 6 were found in the shoots of eight species. For most of these plants above ground sodium concentrations were highest in the hypocotyls. However, in Chenopodium hybridum (shoot K/Na = 10) and C. urbicum (shoot K/Na = 17) above ground sodium concentrations were lowest in hypocotyls and highest in leaves, as in those species accumulating larger amounts of sodium. These differences are discussed with respect to the underlying mechanisms of ion regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号