首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PCR was used to rapidly identify and isolate 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes from bacteria. The Shimodaira-Hasegawa test was used to assess whether phylogenetically anomalous gene placements suggestive of horizontal gene transfer (HGT) were significantly favored over vertical transmission. The best maximum likelihood (ML) ACC deaminase tree was significantly more likely than four alternative ML trees, suggesting HGT.  相似文献   

2.
Pseudomonas sp. strain ACP is capable of growth on 1-aminocyclopropane-1-carboxylate (ACC) as a nitrogen source owing to induction of the enzyme ACC deaminase and the subsequent conversion of ACC to alpha-ketobutyrate and ammonia (M. Honma, Agric. Biol. Chem. 49:567-571, 1985). The complete amino acid sequence of purified ACC deaminase was determined, and the sequence information was used to clone the ACC deaminase gene from a 6-kb EcoRI fragment of Pseudomonas sp. strain ACP DNA. DNA sequence analysis of an EcoRI-PstI subclone demonstrated an open reading frame (ORF) encoding a polypeptide with a deduced amino acid sequence identical to the protein sequence determined chemically and a predicted molecular mass of 36,674 Da. The ORF also contained an additional 72 bp of upstream sequence not predicted by the amino acid sequence. Escherichia coli minicells containing the 6-kb clone expressed a major polypeptide of the size expected for ACC deaminase which was reactive with ACC deaminase antiserum. Furthermore, a lacZ fusion with the ACC deaminase ORF resulted in the expression of active enzyme in E. coli. ACC is a key intermediate in the biosynthesis of ethylene in plants, and the use of the ACC deaminase gene to manipulate this pathway is discussed.  相似文献   

3.
Agrobacterium-mediated gene transfer is widely used for plant molecular genetics, and efficient techniques are required. Recent studies show that ethylene inhibits the gene transfer. To suppress ethylene evolution, we introduced 1-aminocyclopropane-1-carboxylate (ACC) deaminase into Agrobacterium tumefaciens. The ACC deaminase enhanced A. tumefaciens-mediated gene transfer into plants.  相似文献   

4.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

5.
A collection of 233 rhizobia strains from 30 different sites across Saskatchewan, Canada was assayed for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, with 27 of the strains displaying activity. When all 27 strains were characterized based on 16S rRNA gene sequences, it was noted that 26 strains are close to Rhizobium leguminosarum and one strain is close to Rhizobium gallicum. Polymerase chain reaction (PCR) was used to rapidly isolate ACC deaminase structural genes from the above-mentioned 27 strains; 17 of them have 99% identities with the previously characterized ACC deaminase structural gene (acdS) from R. leguminosarum bv. viciae 128C53K, whereas the other ten strains are 84% identical (864~866/1,020 bp) compared to the acdS from strain 128C53K. Southern hybridization showed that each strain has only one ACC deaminase gene. Using inverse PCR, the region upstream of the ACC deaminase structural genes was characterized for all 27 strains, and 17 of these strains were shown to encode a leucine-responsive regulatory protein. The results are discussed in the context of a previously proposed model for the regulation of bacterial ACC deaminase in R. leguminosarum 128C53K. An erratum to this article can be found at  相似文献   

6.
Plant growth-promoting bacteria are useful to phytoremediation strategies in that they confer advantages to plants in contaminated soil. When plant growth-promoting bacteria contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, the bacterial cell acts as a sink for ACC, the immediate biosynthetic precursor of the plant growth regulator ethylene thereby lowering plant ethylene levels and decreasing the negative effects of various environmental stresses. In an effort to gain the advantages provided by bacterial ACC deaminase in the phytoremediation of metals from the environment two transgenic canola lines with the gene for this enzyme were generated and tested. In these transgenic canola plants, expression of the ACC deaminase gene is driven by either tandem constitutive cauliflower mosaic virus (CaMV) 35S promoters or the root specific rolD promoter from Agrobacterium rhizogenes. Following the growth of transgenic and non-transformed canola in nickel contaminated soil, it was observed that the rolD plants demonstrate significantly increased tolerance to nickel compared to the non-transformed control plants.  相似文献   

7.
The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.  相似文献   

8.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

9.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.  相似文献   

10.
Pseudomonas fluorescens strain CHA0, a root colonizing bacterium, has a broad spectrum of biocontrol activity against plant diseases. However, strain CHA0 is unable to utilize 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of plant ethylene, as a sole source of nitrogen. This suggests that CHA0 does not contain the enzyme ACC deaminase, which cleaves ACC to ammonia and alpha-ketobutyrate, and was previously shown to promote root elongation of plant seedlings treated with bacteria containing this enzyme. An ACC deaminase gene, together with its regulatory region, was transferred into P. fluorescens strains CHA0 and CHA96, a global regulatory gacA mutant of CHA0. ACC deaminase activity was expressed in both CHA0 and CHA96. Transformed strains with ACC deaminase activity increased root length of canola plants under gnotobiotic conditions, whereas strains without this activity had no effect. Introduction of ACC deaminase genes into strain CHA0 improved its ability to protect cucumber against Pythium damping-off, and potato tubers against Erwinia soft rot in small hermetically sealed containers. In contrast, ACC deaminase activity had no significant effect on the ability of CHA0 to protect tomato against Fusarium crown and root rot, and potato tubers against soft rot in large hermetically sealed containers. These results suggest that (i) ACC deaminase activity may have lowered the level of plant ethylene thereby increasing root length; (ii) the role of stress-generated plant ethylene in susceptibility or resistance depends on the host-pathogen system, and on the experimental conditions used; and (iii) the constructed strains could be developed as biosensors for the role of ethylene in plant diseases.  相似文献   

11.
This is the first report documenting the presence of 1-aminocyclopropane-1-carboxylate (ACC) deaminase in Rhizobium. This enzyme, previously found in free-living bacteria, yeast and fungi, degrades ACC, the immediate precursor of ethylene in higher plants. Thirteen different rhizobial strains were examined by Southern hybridization, Western blots and ACC deaminase enzyme assay. Five of them tested positive for ACC deaminase. Induction of the expression of ACC deaminase was examined in one of the positively tested strains, Rhizobium leguminosarum bv. viciae 128C53K. This rhizobial ACC deaminase had a trace basal level of expression without ACC, but could be induced by a concentration of ACC as low as 1 μM. The more ACC added to this Rhizobium the higher the expression level of the ACC deaminase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Previously, it was proposed that plant growth-promoting bacteria that possess the enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, can reduce the amount of ethylene produced by a plant and thereby promote root elongation. To test this model, canola seeds were imbibed in the presence of the chemical ethylene inhibitor, 2-aminoethoxyvinyl glycine (AVG), various strains of plant growth-promoting bacteria, and a psychrophilic bacterium containing an ACC deaminase gene on a broad host range plasmid. The extent of root elongation and levels of ACC, the immediate precursor of ethylene, were measured in the canola seedling roots. A modification of the Waters AccQ.Tag Amino Acid Analysis Method was used to quantify ACC in the root extracts. It was found that, in the presence of the ethylene inhibitor, AVG, or any one of several ACC deaminase-containing strains of bacteria, the growth of canola seedling roots was enhanced and the ACC levels in these roots were lowered.  相似文献   

13.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.  相似文献   

14.
1-Aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of ethylene in plants, has never been known to occur in microorganisms. We describe the synthesis of ACC by Penicillium citrinum, purification of ACC synthase [EC 4.4.1.14] and ACC deaminase [EC 4.1.99.4], and their properties. Analyses of P. citrinum culture showed occurrence of ACC in the culture broth and in the cell extract. ACC synthase was purified from cells grown in a medium containing 0.05% L-methionine and ACC deaminase was done from cells incubated in a medium containing 1% 2-aminoisobutyrate. The purified ACC synthase, with a specific activity of 327 milliunit/mg protein, showed a single band of M(r) 48,000 in SDS-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme by gel filtration was 96,000 Da. The ACC synthase had the Km for S-adenosyl-L-methionine of 1.74 mM and kcat of 0.56 s-1 per monomer. The purified ACC deaminase, with a specific activity of 4.7 unit/mg protein, showed one band in SDS-polyacrylamide gel electrophoresis of M(r) 41,000. The molecular mass of the native ACC deaminase was 68,000 Da by gel filtration. The enzyme had a Km for ACC of 4.8 mM and kcat of 3.52 s-1. The presence of 7 mM Cu2+ in alkaline buffer solution was effective for increasing the stability of the ACC deaminase in the process of purification.  相似文献   

15.
16.
We have already described how 1-aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of the plant hormone ethylene, is synthesized in Penicillium citrinum through the same reaction by the catalysis of ACC synthase [EC 4.4.1.14] as in higher plants. In addition, ACC deaminase [EC 4.1.99.4], which degrades ACC to 2-oxobutyrate and ammonia, was also purified from this strain. To study control of induction of ACC deaminase in this organism, we have isolated and analyzed the cDNA of P. citrinum ACC deaminase and studied the expression of ACC deaminase mRNA in P. citrinum cells. By the analysis of peptides from the digests of the purified and modified ACC deaminase with lysylendopeptidase, 70 % of its amino acid sequences were obtained. These amino acid sequences were used to identify a cDNA, consisting of 1,233 bp with an open reading frame of 1,080 bp encoding ACC deaminase with 360 amino acids. The deduced amino acids from the cDNA are identical by 52% and 45% to those of enzymes of Pseudomonas sp. ACP and Hansenula saturnus. Through Northern blot analysis, we found that the mRNA of ACC deaminase was expressed in P. citrinum cells grown in a medium containing 0.05% L-methionine. These findings suggest that ACC synthesized by ACC synthase and accumulated in P. citrinum intracellular spaces can induce the ACC deaminase that degrades the ACC.  相似文献   

17.
ACC脱氨酶是一种有效降低逆境乙烯含量的外源促生物质,该酶在干旱、盐胁迫及重金属污染等逆境条件下能显著提高农作物的抗逆性和增加产量,深入挖掘ACC脱氨酶的应用价值对农业可持续发展具有重要的意义.该文综述了ACC脱氨酶的作用机制及酶活性的影响因素,并重点论述了ACC脱氨酶在提高作物抗逆性及产量和转基因技术等方面应用研究进展.分析了关于拓展ACC脱氨酶取材和应用范围,量化含ACC脱氨酶的根际微生物定殖能力等问题,并展望了 ACC脱氨酶在植物修复领域的应用以及建立ACC脱氨酶转基因技术体系等方面的研究前景和意义.  相似文献   

18.
19.
Transgenic tomato plants with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase gene from Enterobacter cloacae UW4 under the control of a pathogenesis-related promoter (prb-1b) from tobacco were challenged by abiotic stresses to determine the expression patterns ofthe transgene. No ACC deaminase RNA or protein was detected by RT-PCR and in western blots prepared from leaf proteins of transgenic plants after wounding or treatment with α-amino butyric acid, xylanase, ethephon, salicylic acid, jasmonic acid, ethylene, or ethylene plus jasmonic acid. However, expression of the ACC deaminase transgene was observed in leaves and roots oftransformed tomato lines exposed to UV light. The UV response required a minimum of 48 h of exposure and was specific to UV-8 light.  相似文献   

20.
Abstract Microbial ACC deaminase catalyses the conversion of 1-aminocyclopropane-1-carboxylate (ACC), the precursor to the phytohormone ethylene, to ammonia and α-ketobutyrate. We screened microorganisms for ACC degrading ability and cloned and sequenced the ACC deaminase genes from two Pseudomonas strains which displayed high enzyme activity. One of the genes was homologous with two previously sequenced ACC deaminase genes, but the other was different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号