首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Making starch.     
Improvements in understanding the structure of the starch granule and the nature and roles of starch-synthesising enzymes have allowed detailed mechanisms of the synthesis of the amylopectin and amylose components of the granule to be suggested. However, none of these proposed mechanisms has yet been shown to operate in vivo. Several critical aspects of granule synthesis, including granule initiation and the formation of the growth rings, remain a mystery.  相似文献   

3.
Antibodies were used to probe the degree of association of starch biosynthetic enzymes with starch granules isolated from maize (Zea mays) endosperm. Graded washings of the starch granule, followed by release of polypeptides by gelatinization in 2% sodium dodecyl sulfate, enables distinction between strongly and loosely adherent proteins. Mild aqueous washing of granules resulted in near-complete solubilization of ADP-glucose pyrophosphorylase, indicating that little, if any, ADP-glucose pyrophosphorylase is granule associated. In contrast, all of the waxy protein plus significant levels of starch synthase I and starch branching enzyme II (BEII) remained granule associated. Stringent washings using protease and detergent demonstrated that the waxy protein, more than 85% total endosperm starch synthase I protein, and more than 45% of BEII protein were strongly associated with starch granules. Rates of polypeptide accumulation within starch granules remained constant during endosperm development. Soluble and granule-derived forms of BEII yielded identical peptide maps and overlapping tryptic fragments closely aligned with deduced amino acid sequences from BEII cDNA clones. These observations provide direct evidence that BEII exits as both soluble and granule-associated entities. We conclude that each of the known starch biosynthetic enzymes in maize endosperm exhibits a differential propensity to associate with, or to become irreversibly entrapped within, the starch granule.  相似文献   

4.
Starch defines a semicrystalline polymer made of two different polysaccharide fractions. The A- and B-type crystalline lattices define the distinct structures reported in cereal and tuber starches, respectively. Amylopectin, the major fraction of starch, is thought to be chiefly responsible for this semicrystalline organization while amylose is generally considered as an amorphous polymer with little or no impact on the overall crystalline organization. STA2 represents a Chlamydomonas reinhardtii gene required for both amylose biosynthesis and the presence of significant granule-bound starch synthase I (GBSSI) activity. We show that this locus encodes a 69 kDa starch synthase and report the organization of the corresponding STA2 locus. This enzyme displays a specific activity an order of magnitude higher than those reported for most vascular plants. This property enables us to report a detailed characterization of amylose synthesis both in vivo and in vitro. We show that GBSSI is capable of synthesizing a significant number of crystalline structures within starch. Quantifications of amount and type of crystals synthesized under these conditions show that GBSSI induces the formation of B-type crystals either in close association with pre-existing amorphous amylopectin or by crystallization of entirely de novo synthesized material.  相似文献   

5.
6.
The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model system for nutrient acquisition by gut Bacteroidetes, a dominant phylum of gut bacteria. The Sus includes SusCDEFG, which assemble on the cell surface to capture, degrade and import starch. While SusD is an essential starch‐binding protein, the precise role(s) of the partially homologous starch‐binding proteins SusE and SusF has remained elusive. We previously reported that a non‐binding version of SusD (SusD*) supports growth on starch when other members of the multi‐protein complex are present. Here we demonstrate that SusE supports SusD* growth on maltooligosaccharides, and determine the domains of SusE essential for this function. Furthermore, we demonstrate that SusE does not need to bind starch to support growth in the presence of SusD*, suggesting that the assembly of SusCDE is most important for maltooligosaccharide uptake in this context. However, starch binding by proteins SusDEF directs the uptake of maltooligosaccharides of specific lengths, suggesting that these proteins equip the cell to scavenge a range of starch fragments. These data demonstrate that the assembly of core Sus proteins SusCDE is secondary to their glycan binding roles, but glycan binding by Sus proteins may fine tune the selection of glycans from the environment.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Enzymic explorations of the structures of starch and glycogen.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

14.
目的:研究一株枯草芽胞杆菌分解淀粉的能力及其α-淀粉酶活性.方法:实验设无淀粉对照组及不同淀粉浓度实验组.接种枯草芽胞杆菌,37℃恒温摇床,200 r/min,连续培养,不同时间段内测酶活值、细菌计数及淀粉消耗量.结果:淀粉浓度在1.75%时淀粉消耗量、α-淀粉酶活性、细菌数及发酵生物量干重均较0.5%、1.0%实验组明显增加.结论:37℃温度下,枯草芽胞杆菌分解淀粉的能力很强.  相似文献   

15.
16.
The DEAE-cellulose column chromatography has shown two differentforms of starch synthetase, which are referred to as fractionsI and II in extracts of rice seeds (non-waxy and waxy varieties)harvested at the milky stage. Similarly treated leaf extractsof rice (non-waxy) and maize (non-waxy) also demonstrate dieexistence of two major isozyme fractions. In all enzyme preparationstested, ADP-glucose was the sole glucosyl donor and UDP-glucosewas totally inactive. Rechromatography, on a DEAE-cellulosecolumn, of two enzyme fractions (I and II) separated from non-waxyrice seed extracts did not alter their elution patterns. Someof their enzymic properties were compared, in particular, theirglucosyl-acceptor (primer) specificities. Regardless of potentamylase activities in the two fractions, notable differenceswere observed in that fraction I utilized the long-chain oligosaccharides[maltododecaose] and various types of high molecular -glucansmore readily than fraction II. However, short-chain oligosaccharides[maltose, maltotriose and maltotetraose] were utilized morereadily by fraction II than by fraction I. A possible role forthe two starch synthetase isozymes in starch synthesis in plantcells is discussed. (Received January 5, 1971; )  相似文献   

17.
In order to clarify the characteristics of the basic units responsible for the blue coloring of iodine/iodide in amylose, we made a resonance Raman spectroscopic study at several KI concentrations using excitation by Ar+, He-Ne, and Kr+ lasers and amyloses with the degrees of polymerization (DP) of 30, 100, 300, and 1000. Similar Raman spectra were observed, regardless of the KI and I2 concentrations, DP, and excitation wavelengths. Four Raman lines appearing at 159, 111, 55, and 27 cm?1 were obviously fundamental tones, with a degree of depolarization ρ of ca. 1/3 for every spectrum. However, the internal ratios of the intensities of the 159, 55, and 27 cm?1 lines to that of the 111-cm?1 line decreased with increasing KI concentration. Based on the value of ρ, the assignment of the fundamental lines was made by taking a schematic model of the true motions as a projection in separately analyzing the modes of stretching and bending vibrations for a pseudolinear polyiodide chain, which we found to be perturbed by the external forces of the amylose lattice. In accordance with the variation of the force constants from the assignment of the spectra associated with the change in the composition of the bound species, it was concluded that the basic unit changed from I to I through I with decreasing KI concentration.  相似文献   

18.
19.
The presence of starch-bound phosphate in potato leaves collected late afternoon in the middle of July when the starch content is high (12.9% dry matter basis) was studied. Starch was extracted from the leaves with dimethylsulphoxide and fragments of starch were purified by ultrafiltration in two steps in combination with an -amylase hydrolysis. The fragments were analysed with 31P-NMR and no signals corresponding to phosphate monoesters linked to glucose at the C3 and/or C6 positions were detected. The results show that starch in potato leaves does not contain any detectable amounts of phosphate monoesters.  相似文献   

20.
Plain starch from two varieties of potato and wheat, one variety of rye, triticale, oat, corn, waxy corn, cassava and amaranthus was thermolyzed subsequently at 170, 250, 285, 300 and 325 °C for 30min-2h intervals. The concentration of unpaired spins was determined. Among varieties studied, the oat starch is least thermally resistant, and both the triticale and maize starches are most thermally resistant. Radicals generated in such a manner are very stable. The analysis of experimental and simulated EPR spectra points to the unpaired spin delocalization and steric hindrances are responsible for the stability of such radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号