首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effects of pregnancy on ethanol clearance rates and on blood and urine ethanol concentrations (BECs and UECs) in adult Sprague-Dawley rats infused with ethanol intragastrically. Pregnant rats had greater ethanol clearance following an intragastric or intravenous ethanol bolus (3 or 0.75 g/kg, respectively) relative to non-pregnant rats (p<0.05). Pregnant rats infused with ethanol-containing diets for several days had lower (p<0.05) UECs than non-pregnant rats when given the same dose of ethanol. Non-pregnant rats infused ethanol-containing diets at two levels of calories (the higher caloric intake required by pregnant rats [220 kca/kg75/d] or the normal calories required for non-pregnant rats [187 kcal/kg75/d]) had statistically equal UECs, suggesting that increased caloric intake was not responsible for the effect of pregnancy. While the activity of hepatic alcohol dehydrogenase (ADH) did not differ with pregnancy, gastric ADH activity was increased (p<0.001). Furthermore, total hepatic aldehyde dehydrogenase (ALDH) and hepatic mitrochrondrial protein were increased (p<0.05) and hepatic CYP2E1 activity was suppressed (p<0.05). The results suggest that pregnancy increases ethanol elimination in pregnant rats by: 1) induction of gastric ADH; 2) elevated hepatic ALDH activity; and 3) increased mitochondrial respiration. The greater ethanol clearance results in lower tissue ethanol concentrations achieved during pregnancy for a given dose, and this may have clinical significance as a mechanism to protect the growing fetus from ethanol toxicity.  相似文献   

2.
3.
4.
The contribution of the stomach to ethanol oxidation in the rat   总被引:5,自引:0,他引:5  
To estimate the amount of ethanol that can be oxidized in the stomach, steady-state conditions were created in a group of fed rats by giving a loading dose of ethanol (2 g/kg body wt I.V.) followed by continuous infusion either intravenously or intragastrically. The rate of ethanol oxidation was calculated from the rate of infusion required to maintain steady blood levels of approximately 30 mM for at least 3 hours. Gastrointestinal ethanol concentrations and total contents also remained steady. The rate of ethanol oxidation was 19.3% faster during intragastric than during intravenous infusion (p less than 0.01). When measured at the prevailing luminal ethanol concentration (145 mM) and expressed per body weight, the gastric ADH activity represented 14% of the hepatic activity at 30 mM ethanol, suggesting that gastric ADH activity could account for most of the increased rate of oxidation when ethanol is given intragastrically. Thus, gastric ethanol oxidation by a high Km ADH in the rat represents a significant fraction of the total rate of ethanol oxidation and it is therefore one of the factors which determines the bioavailability of orally administered ethanol.  相似文献   

5.
6.
In Sm. lipolytica one NAD+-dependent and three NADP+-dependent alcohol dehydrogenases are detectable by polyacrylamide gelelectrophoresis. The NAD+-dependent ADH (ADH I), with a molecular weight of 240,000 daltons, reacts more intensively with long-chain alcohols (octanol) than with short-chain alcohols (methanol, ethanol). The ADH I is not or only minimally subject to glucose repression. Besides the ADH I band no additional inducible NAD+-dependent ADH band is gel-electrophoretically detectable during growth of yeast cells in medium containing ethanol or paraffin. The ADH I band is very probably formed by two ADH enzymes with the same electrophoretic mobility. The NADP+-dependent alcohol dehydrogenases (ADH II--IV) react with methanol, ethanol and octanol with different intensity. In polyacrylamide gradients two bands of NADP+-dependent ADH are detectable: one with a molecular weight of 70,000 daltons and the other with 120,000 daltons. The occurrence of the three NADP+-dependent alcohol dehydrogenases is regulated by the carbon source of the medium. Sm. lipolytica shows a high tolerance against allylalcohol. Resistant mutants can be isolated only at concentrations of 1 M allylalcohol in the medium. All isolates of allylalcohol-resistant mutants show identical growth in medium containing ethanol as the wild type strain.  相似文献   

7.
Starch gel electrophoresis of homogenates from human stomach mucosa resolves three alcohol dehydrogenase (ADH) forms: the anodic chi-ADH (class III), the cathodic gamma-ADH (class I), and a new form of slow cathodic mobility that has not been previously characterized. In this work, we describe the purification in three chromatographic steps and the physical and kinetic characterization of this new human alcohol dehydrogenase, which we have named sigma-ADH. The enzyme exhibits the general physicochemical features (Mr, zinc content, subunit Mr, cofactor preference) of all mammalian alcohol dehydrogenases. The kinetic studies show a high Km value (41 mM) and a high kcat value (280 min-1) for ethanol at pH 7.5. The Km decreases as the alcohol increases its chain length. The aldehydes are better substrates than the corresponding alcohols, with m-nitrobenzaldehyde being the best substrate examined. sigma-ADH is strongly inhibited by 4-methylpyrazole, but with a Ki (10 microM) still higher than that for a class I isoenzyme. These properties suggest that sigma-ADH is a class II isoenzyme, different from pi-ADH and similar to that previously described by us in rat stomach. At the high ethanol concentrations in stomach after drinking, sigma-ADH is probably the ADH form with the largest contribution to human gastric ethanol metabolism.  相似文献   

8.
Hydrophobic anion activation of human liver chi chi alcohol dehydrogenase   总被引:13,自引:0,他引:13  
Class III alcohol dehydrogenase (chi chi-ADH) from human liver binds both ethanol and acetaldehyde so poorly that their Km values cannot be determined, even at ethanol concentrations up to 3 M. However, long-chain carboxylates, e.g., pentanoate, octanoate, deoxycholate, and other anions, substantially enhance the binding of ethanol and other substrates and hence the activity of class III ADH up to 30-fold. Thus, in the presence of 1 mM octanoate, ethanol displays Michaelis-Menten kinetics. The degree of activation depends on the size both of the substrate and of the activator; generally, longer, negatively charged activators result in greater activation. At pH 10, the activator binds to the E-NAD+ form of the enzyme to potentiate substrate binding. Pentanoate activates methylcrotyl alcohol oxidation and methylcrotyl aldehyde reduction 14- and 30-fold, respectively. Such enhancements of both oxidation and reduction are specific for class III ADH; neither class I nor class II shows this effect. The implications as to the nature of the physiological substrate(s) of class III ADH are discussed in light of the recent finding that this ADH and glutathione-dependent formaldehyde dehydrogenase are identical. A new rapid purification procedure for chi chi-ADH is presented.  相似文献   

9.
Three classes of hepatic alcohol dehydrogenase (ADH), analogous to those of human liver, are present in Macaca nemestrina. Their functional, compositional, and structural features have been established with isozymes purified to homogeneity by affinity and conventional ion-exchange chromatography. One unusual molecular form of M. nemestrina ADH is electrophoretically indistinguishable as it comigrates with one of the cathodic class I isozymes on starch gel electrophoresis. While its substrate and inhibitor specificity, a high Km value for ethanol (50 mM at pH 10), and lack of binding to the pyrazole affinity resin are consistent with the kinetics of class II ADH, the physiochemical and compositional properties are virtually identical with all other known mammalian alcohol dehydrogenases. The unexpected presence of this previously unknown ADH variant in livers of M. nemestrina demonstrates the need for prudence in assignment of ADH isozymes. Classification based solely on electrophoretic position in starch gels and enzymatic properties of human ADH but without isolation and characterization of individual isozymes may prove insufficient and inadequate. The genetic or phenotypic nature of this isozyme remains to be demonstrated.  相似文献   

10.
11.
目的:克隆编码人Ⅰ类乙醇脱氢酶基因,并探讨Ⅰ类乙醇脱氢酶(ADH)在乙醇的肝代谢中的作用。方法:从胎儿肝,肾提取的总RNA;经RT-PCR扩增得到cDNA并克隆至pGEM-T载体。cDNA序列用Kpn I和Pst I酶切鉴定,并检测其在大肠杆菌中表达活性。通过吸光法检测酶的活性。结果:成功克隆了人Ⅰ类乙醇脱氢酶并在大肠杆菌中获得稳定表达。经检测其酶活性分别为0.81~1.31U/mg、0.09~0.15U/mg和0.76~1.11U/mg。结论:cDNA克隆成功,并发现其与肝脏中分离的酶具有相似的活性。  相似文献   

12.
G M?rdh  D S Auld  B L Vallee 《Biochemistry》1987,26(24):7585-7588
Thyroid hormones are potent, instantaneous, and reversible inhibitors of ethanol oxidation catalyzed by isozymes of class I and II human alcohol dehydrogenase (ADH). None of the thyroid hormones inhibits class III ADH. At pH 7.40 the apparent Ki values vary between 55 and 110 microM for triiodothyronine, 35 and greater than 200 microM for thyroxine, and 10 and 23 microM for triiodothyroacetic acid. The inhibition is of a mixed type toward both NAD+ and ethanol. The binding of the thyroid hormone triiodothyronine to beta 1 gamma 1 ADH is mutually exclusive with 1,10-phenanthroline, 4-methylpyrazole, and testosterone, identifying a binding site(s) for the thyroid hormones, which overlap(s) both the 1,10-phenanthroline site near the active site zinc atom and the testosterone binding site, the latter being a regulatory site on the gamma-subunit-containing isozymes and distinct from their catalytic site. The inhibition by thyroid hormones may have implications for regulation of ADH catalysis of ethanol and alcohols in the intermediary metabolism of dopamine, norepinephrine, and serotonin and in steroid metabolism. In concert with other hormonal regulators, e.g., testosterone, the rate of ADH catalysis is capable of being fine tuned in accord with both substrate and modulator concentrations.  相似文献   

13.
M Tsukahara  A Yoshida 《Genomics》1989,4(2):218-220
Human class I alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1; ADH) is the major enzyme involved in ethanol oxidation. Three highly homologous genes govern the synthesis of three types of subunits which form several ADH isozymes. The locus for class I ADH loci was previously assigned to q21-25 of chromosome 4 by somatic cell hybridization techniques. Analysis of grain positions by in situ hybridization of chromosomes indicated that the ADH cluster locus is on 4q21-23, probably 4q22.  相似文献   

14.
Class III alcohol dehydrogenase (ADH) predominates in human testis. The two isozymes of this class were isolated jointly by affinity and conventional ion exchange chromatography. They display anodic electrophoretic mobility at pH 8.2, are completely insensitive to 4-methylpyrazole inhibition and oxidize ethanol and other short-chain primary alcohols very poorly. Thus, their kinetic and inhibition characteristics are identical to human liver class III ADH. In contrast, class I ADH is a barely detectable component of testicular alcohol dehydrogenase. The physicochemical characteristics of class III ADH are virtually identical to those of alcohol dehydrogenases found in other organs.  相似文献   

15.
Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1M sodium phosphate buffer, at pH 7.5 and 25°C, containing 0.5 mM NAD(+) and varied concentrations of substrate. K(M) values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12-57 mM, for methanol to be 2.0-3500 mM, for ethylene glycol to be 4.3-2600mM, and for isopropanol to be 0.73-3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for V(max) for the toxic alcohols were much less than that of the K(M) across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (K(is)) for the whole family being 0.062-960 μM and the intercept inhibition constants (K(ii)), 33-3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives.  相似文献   

16.
Individuals who carry the most active alcohol dehydrogenase (ADH) isoforms are protected against alcoholism. This work addresses the mechanism by which a high ADH activity leads to low ethanol intake in animals. Male and female ethanol drinker rats (UChB) were allowed access to 10% ethanol for 1 h. Females showed 70% higher hepatic ADH activity and displayed 60% lower voluntary ethanol intake than males. Following ethanol administration (1 g/kg ip), females generated a transient blood acetaldehyde increase ("burst") with levels that were 2.5-fold greater than in males (P < 0.02). Castration of males led to 1) an increased ADH activity (+50%, P < 0.001), 2) the appearance of an acetaldehyde burst (3- to 4-fold vs. sham), and 3) a reduction of voluntary ethanol intake comparable with that of na?ve females. The ADH inhibitor 4-methylpyrazole blocked the appearance of arterial acetaldehyde and increased ethanol intake. Since the release of NADH from the ADH.NADH complex constitutes the rate-limiting step of ADH (but not of ALDH2) activity, endogenous NADH oxidizing substrates present at the time of ethanol intake may contribute to the acetaldehyde burst. Sodium pyruvate given at the time of ethanol administration led to an abrupt acetaldehyde burst and a greatly reduced voluntary ethanol intake. Overall, a transient surge of arterial acetaldehyde occurs upon ethanol administration due to 1) high ADH levels and 2) available metabolites that can oxidize hepatic NADH. The acetaldehyde burst is strongly associated with a marked reduction in ethanol intake.  相似文献   

17.
The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.  相似文献   

18.
Alcohol dehydrogenase (ADH) is the primary enzyme responsible for metabolism of ethanol to acetaldehyde. One class of ADH has been described in fish, and has been found to be structurally similar to mammalian class III ADH (glutathione-dependent formaldehyde dehydrogenase) but functionally similar to class I ADH (primarily responsible for ethanol metabolism). We have cloned a cDNA by RT-PCR from zebrafish (Danio rerio) liver representing the zebrafish ADH3 gene product, with a coding region of 1131 nucleotides. The deduced amino acid sequences share 90% identity to ADH3 from the marine fish Sparus aurata, and 82 and 81% identity to the mouse and human sequences, respectively. Using a quantitative competitive RT-PCR assay, ADH3 mRNA was detected at all timepoints analyzed and was lowest between 8 and 24 h postfertilization. Thus, differential ADH3 expression may be at least partly responsible for temporal variations in the sensitivity of zebrafish embryos to developmental alcohol exposure.  相似文献   

19.
Alcohol metabolism in vivo cannot be explained solely by the action of the classical alcohol dehydrogenase, Class I ADH (ADH1). Over the past three decades, attempts to identify the metabolizing enzymes responsible for the ADH1-independent pathway have focused on the microsomal ethanol oxidizing system (MEOS) and catalase, but have failed to clarify their roles in systemic alcohol metabolism. In this study, we used Adh3-null mutant mice to demonstrate that Class III ADH (ADH3), a ubiquitous enzyme of ancient origin, contributes to alcohol metabolism in vivo dose-dependently resulting in a diminution of acute alcohol intoxication. Although the ethanol oxidation activity of ADH3 in vitro is low due to its very high Km, it was found to exhibit a markedly enhanced catalytic efficiency (kcat/Km) toward ethanol when the solution hydrophobicity of the reaction medium was increased with a hydrophobic substance. Confocal laser scanning microscopy with Nile red as a hydrophobic probe revealed a cytoplasmic solution of mouse liver cells to be much more hydrophobic than the buffer solution used for in vitro experiments. So, the in vivo contribution of high-Km ADH3 to alcohol metabolism is likely to involve activation in a hydrophobic solution. Thus, the present study demonstrated that ADH3 plays an important role in systemic ethanol metabolism at higher levels of blood ethanol through activation by cytoplasmic solution hydrophobicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号