首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The 5-hydroxytryptamine (5-HT4) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT4 receptor [3H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography, and related this to 5-HT transporter ( S )-[ N -methyl-3H]citalopram binding. We also determined the regulation of 5-HT4 receptor binding by 1, 14, and 21 days of paroxetine administration and subchronic 5-HT depletion, and compared this with changes in 5-HT2A receptor [3H]MDL100907 binding. In the Flinders Sensitive Line, the 5-HT4 receptor and 5-HT transporter binding were decreased in the dorsal and ventral hippocampus, and the changes in binding were directly correlated within the dorsal hippocampus. Chronic but not acute paroxetine administration caused a 16–47% down-regulation of 5-HT4 receptor binding in all regions evaluated including the basal ganglia and hippocampus, while 5-HT depletion increased the 5-HT4 receptor binding in the dorsal hippocampus, hypothalamus, and lateral globus pallidus. In comparison, the 5-HT2A receptor binding was decreased in the frontal and cingulate cortices after chronic paroxetine administration, and markedly reduced in several regions after 5-HT depletion. Thus, the 5-HT4 receptor binding was decreased in the Flinders Sensitive Line depression model and in response to chronic paroxetine administration.  相似文献   

2.
Abstract: We analyzed the existence of an additional serotonin (5-HT) receptor subtype, sensitive to 5-carboxamidotryptamine, in the mammalian brain. Radioligand binding studies with [3H]5-HT were carried out in rat, guinea pig, and human brain membranes, in the presence of unlabeled drugs to mask the binding to all known 5-HT receptors, with the exception of 5-HT1E sites. Under these conditions, unlabeled 5-carboxamidotryptamine still showed a biphasic competition curve with a nanomolar affinity component. Saturation studies with 5-[3H]carboxamidotryptamine were carried out in the presence of (±)-8-hydroxy-2-(di- n -propylamino)tetralin, mesulergine, and ergotamine, to mask the binding to all receptors known to be labeled by 5-carboxamidotryptamine. These studies showed the existence in cortex and hippocampus from guinea pig and human brain of a remaining binding site with high affinity ( pK D = 7.8–8.1) and a unique pharmacological profile. 5-HT and 5-carboxamidotryptamine showed nanomolar affinity, whereas 5-methoxytryptamine recognized this binding site with intermediate affinity. Other drugs exhibited low or very low potency in inhibiting this binding. The addition of 5'-guanylylimidodiphosphate significantly reduced the number of binding sites labeled by 5-[3H]carboxamidotryptamine, in the presence of the masking drugs described above, indicating the interaction with a GTP-binding protein. Preliminary autoradiographic studies in human brain appear to indicate that this 5-HT binding site is present in areas such as the globus pallidus, neocortex, and hippocampus, among others.  相似文献   

3.
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3H]CP-96,501, was found to bind with a high affinity ( K D, 0.21 n M ) to a single binding site ( n H, 1.0). The receptor density of this site ( B max, 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3H]5-HT. Competition curves of 16 serotonergic compounds in [3H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3H]5-HT or [125I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor.  相似文献   

4.
Abstract: Binding of [3H]LY278584, which has been previously shown to label 5-hydroxytryptamine3 (5-HT3) receptors in rat cortex, was studied in human brain. Saturation experiments revealed a homogeneous population of saturable binding sites in amygdala ( K D= 3.08 ± 0.67 n M, B max= 11.86 ± 1.87 fmol/mg of protein) as well as in hippocampus, caudate, and putamen. Specific binding was also high in nucleus accumbens and entorhinal cortex. Specific binding was negligible in neocortical areas. Kinetic studies conducted in human hippocampus revealed a K on of 0.025 ± 0.009 n M −1 min−1 and a K off of 0.010 ± 0.002 min−1. The kinetics of [3H]LY278584 binding were similar in the caudate. Pharmacological characterization of [3H]LY278584 specific binding in caudate and amygdala indicated the compound was binding to 5-HT3 receptors. We conclude that 5-HT3 receptors labeled by [3H]LY278584 are present in both limbic and striatal areas in human brain, suggesting that 5-HT3 receptor antagonists may be able to influence the dopamine system in humans, similarly to their effects in rodent studies.  相似文献   

5.
Abstract: Cooperation in the action of agonists suggests that there are multiple binding sites on 5-hydroxytryptamine3 (5-HT3) receptors. The purpose of this study was to characterize these binding sites and their interactions on both native and cloned 5-HT3 receptors. The affinities of competitive 5-HT3 receptor antagonists were similar regardless of whether the receptors were labeled with [3H]RS-42358, [3H]granisetron, or 1-( m -[3H]chlorophenyl)biguanide ([3H]mCPG). By contrast, the affinities of the agonists 5-HT, mCPG, and phenylbiguanide were approximately 10-fold higher when the receptors were labeled with [3H]mCPG. The dissociation of [3H]mCPG, [3H]RS-42358, and [3H]RS-25259, but not [3H]granisetron, from both cloned and native 5-HT3 receptors was markedly slower in the presence of 5-HT or 2-methyl-5-HT than in the presence of antagonists such as RS-42358. This suggests that the binding of these agonists to unoccupied sites on the receptor can increase the receptor's affinity for prebound ligands and thereby slow their dissociation. These data support previous indications of positive cooperation among multiple binding sites on both native and cloned 5-HT3 receptors, and they extend this idea by demonstrating that agonists can modify the interaction of some, but not all, antagonists with the receptor.  相似文献   

6.
Abstract: We synthesized a potent and selective antagonist radioligand for the neurokinin (NK)-1 receptor and characterized its binding to guinea pig striatal membranes. ( R ) - N - [2 - [Acetyl[3H3][(2 - methoxyphenyl) - methyl]amino] - 1 - (1 H - indol - 3 - ylmethyl)ethyl][1,4' - bipiperidine]-1'-acetamide ([3H]LY303870) binds to a single class of sites with an equilibrium K D of 0.22 n M and a B max of 723 fmol/mg of protein. Unlabeled LY303870 potently inhibited the binding with an IC50 of 0.56 n M , whereas the less active ( S )-enantiomer (LY306155) was substantially less potent. The nonpeptide NK-1 antagonists (±)-CP96,345 and (±)-RP 67580 had IC50 values of 0.74 and 49 n M , respectively. Substance P (SP) was also a potent inhibitor with with an IC50 of 3.1 n M . The inhibition by SP could be separated into two components: a high-affinity component with a K i of 0.53 n M and a lower-affinity component with a K i of 155 n M . Addition of 100 µ M guanylyl 5'-imidodiphosphate [Gpp(NH)p] in the incubation increased the relative amount of the low-affinity agonist state of the receptor. Consistent with the antagonist properties of LY303870, the dissociation rate of [3H]LY303870 was not changed by the presence of 100 µ M Gpp(NH)p. The distribution of [3H]LY303870 binding sites in the guinea pig brain closely matched the distribution of NK-1 receptors labeled by [3H]SP. Therefore, [3H]LY303870 is a potent and selective antagonist radioligand for NK-1 receptors in guinea pig brain. In addition, regulation of NK-1 agonist affinity by guanine nucleotides is similar to that seen for monoaminergic receptors.  相似文献   

7.
Abstract: A synthetic peptide (25 amino acids) corresponding to a specific portion of the third intracytoplasmic loop of the rat serotonin 5-HT1B/1Dβ receptor was coupled to keyhole limpet hemocyanin and injected monthly into rabbits. Anti-peptide antibodies were detected by enzyme-linked immunosorbent assay and characterized by immunoprecipitation of the 5-HT1B/1Dβ receptor in CHAPS-solubilized extracts from rat striatal membranes. Up to 60% of solubilized striatal serotonin- O -carboxymethylglycyl[125I]iodotyrosinamide ([125I]GTI; a selective 5-HT1B/1D radioligand) binding sites were immunoprecipitated and subsequently pharmacologically identified as 5-HT1B receptors. The remaining 40% of [125I]GTI binding sites were shown to be 5-HT1D receptors. In addition, these antibodies were successfully used in immunofluorescence experiments to detect the 5-HT1B/1Dβ, but not the 5-HT1D/1Dα, receptor in transiently transfected LLC-PK1 cells. Immunoautoradiographic experiments performed with brain sections from the rat, mouse, and guinea pig showed that the substantia nigra and globus pallidus contained the highest densities of 5-HT1Dβ receptor-like immunoreactivity. Comparison of the regional distribution of immunolabeling with that of the specific binding of [125I]GTI in the brain of these species further confirmed that the anti-peptide antibodies selectively recognized only the 5-HT1Dβ component of [125I]GTI specific receptor binding sites.  相似文献   

8.
Abstract: Using a combination of library screening and nested PCR based on a partial human serotonin 5-HT4 receptor sequence, we have cloned the complete coding region for a human 5-HT4 receptor. The sequence shows extensive similarity to the published porcine 5-HT4A and rat 5-HT4L receptor cDNA; however, in comparison with the latter, we find an open reading frame corresponding to only 388 amino acids instead of 406 amino acids. This difference is due to a frame shift caused by an additional cytosine found in the human sequence after position 1,154. Moreover, we also found the same additional cytosine in the rat 5-HT4 sequence. We confirmed the occurrence of the sequence by examining this part of the sequence in genomic DNA of 10 human volunteers and in rat genomic DNA. Based on a part of the genomic 5-HT4 receptor sequence that was identified in the cloning process, there seem to be at least two possible splice sites in the coding region of the gene. The human 5-HT4 receptor, transiently expressed in COS-7 cells, showed radioligand binding properties similar to 5-HT4 receptors in guinea pig striatal tissue. [3H]GR 113808 revealed K D values of 0.15 ± 0.01 n M for the human receptor and 0.3 ± 0.1 n M in the guinea pig tissue. Binding constants were determined for four investigated 5-HT4 antagonists and three agonists, and appropriate binding inhibition constants were found in each case. Stimulation of transfected COS-7 cells with 5-HT4-specific agonists caused an increase in cyclic AMP levels.  相似文献   

9.
Abstract: We examined the effect of kindling on serotonergic neurotransmission in the hippocampus by measuring serotonin (5-HT) release and uptake in hippocampal synaptosomes and 5-HT1A and 5-HT4 receptor subtypes during and at different times after electrical kindling of the dentate gyrus. Using quantitative receptor autoradiography, we found that binding of 8-[3H]hydroxy-2-(di- n -propylamino)tetralin ([3H]8-OH-DPAT) to 5-HT1A receptors was selectively increased by 20% on average ( p < 0.05) in the dentate gyrus of the stimulated and contralateral hippocampus 2 days after stage 2 (stereotypes and occasional retraction of a forelimb) and by 100% on average ( p < 0.05) 1 week after stage 5 (tonic-clonic seizures) compared with sham-stimulated rats. A 20% increase ( p < 0.05) was observed 1 month after the last generalized seizure. No changes were found after a single afterdischarge. 5-HT4 receptors, which colocalize with 5-HT1A receptors on hippocampal neurons, were not modified in kindled tissue. [3H]5-HT uptake and its release as well as the 5-HT1B autoreceptor function did not differ from shams in hippocampal synaptosomes at stages 2 and 5. Systemic administration of 100 and 1,000 µg kg−1 8-OH-DPAT or 1,000 µg kg−1 WAY-100,635, 30 min before each electrical stimulation, did not significantly alter kindling progression or the occurrence of stage 5 seizures in fully kindled rats. The changes in 5-HT1A receptor density in the dentate gyrus are part of the plastic modifications occurring during kindling and may contribute to modulating tissue hyperexcitability.  相似文献   

10.
Abstract: Serotonin (5-HT) applied at 1, 3, and 10 µ M into the striatum of halothane-anesthetized rats by in vivo microdialysis enhanced dopamine (DA) outflow up to 173, 283, and 584% of baseline values, respectively. The 5-HT effect was partially reduced by 1 or 10 µ M GR 125,487, a 5-HT4 antagonist, and by 100 µ M DAU 6285, a 5-HT3/4 antagonist, whereas the 5-HT1/2/6 antagonist methiothepin (50 µ M ) was ineffective. In the presence of tetrodotoxin the effect of 1 µ M 5-HT was not affected by 5-HT4 antagonists. In addition, tetrodotoxin abolished the increase in DA release induced by the 5-HT4 agonist ( S )-zacopride (100 µ M ). In striatal synaptosomes, 1 and 10 µ M 5-HT increased the outflow of newly synthesized [3H]DA up to 163 and 635% of control values, respectively. The 5-HT4 agonists BIMU 8 and ( S )-zacopride (1 and 10 µ M ) failed to modify [3H]DA outflow, whereas 5-methoxytryptamine (5-MeOT) at 10 µ M increased it (62%). In prelabeled [3H]DA synaptosomes, 1 µ M 5-HT, but not ( S )-zacopride (1 and 10 µ M ), increased [3H]DA outflow. DAU 6285 (10 µ M ) failed to modify the enhancement of newly synthesized [3H]DA outflow induced by 5-MeOT or 5-HT (1 µ M ), whereas the effect of 5-HT was reduced to the same extent by the DA reuptake inhibitor nomifensine (1 µ M ) alone or in the presence of DAU 6285. These results show that striatal 5-HT4 receptors are involved in the 5-HT-induced enhancement of striatal DA release in vivo and that they are not located on striatal DA terminals.  相似文献   

11.
Abstract: We have assessed the ability of the serotonergic antagonist mianserin to modulate the number and functional activity of human 5-hydroxytryptamine2A (5-HT2A) and 5-HT2C receptors stably expressed in the human neuroblastoma cell line SH-SY5Y. Incubation of cells expressing the 5-HT2A receptor with mianserin (100 n M ) for 24 h caused a significant decrease (48%) in the binding capacity of [3H]ketanserin. This receptor down-regulation was associated with a corresponding decrease in the maximal production of inositol phosphates induced by 5-HT but not by carbachol. Exposure of cells expressing the 5-HT2C receptor to mianserin (100 n M ) for 72 h but not for 24 h similarly resulted in a significant reduction (44%) in [3H]mesulergine binding. Corresponding analysis of inositol phosphate production by 5-HT at the 5-HT2C receptor after incubation with mianserin showed no change in maximal response after 24 h. No change in the binding capacity of either radioligand was seen after incubation with mianserin for 1 h. A decrease in the binding affinity of both radioligands was also observed after mianserin treatment, but this decrease was similar after 1 h of incubation to that seen after 24 or 72 h, and was probably due to the retention of mianserin within the tissue. We conclude that antagonist down-regulation is evident at human 5-HT2A and 5-HT2C receptors stably expressed in a human neuroblastoma cell line and is probably mediated by a direct action of mianserin at the receptor.  相似文献   

12.
Abstract: The effect of a 5-hydroxytryptamine7 (5-HT7) receptor-directed antisense oligonucleotide on rat behaviour and neuroendocrine function was investigated. Six days of intracerebroventricular 5-HT7 antisense oligonucleotide treatment significantly reduced [3H]5-HT binding to hypothalamic 5-HT7 receptors, whereas cortical 5-HT2C density remained unchanged. In rats on a food-restricted diet, both antisense and mismatch oligonucleotides reduced food intake and body weight compared with that in vehicle-treated controls by day 4 of administration. 5-HT7 antisense oligonucleotide administration did not affect exploratory or locomotor activity in photocell activity monitors on day 4 or elevated plus-maze behaviour on day 6 of intracerebroventricular treatment. 5-HT7 antisense oligonucleotide did not affect plasma corticosterone or prolactin levels or 5-HT turnover in either 5-HT cell body or terminal areas. These data demonstrate that intracerebroventricular 5-HT7 antisense oligonucleotide administration selectively reduced rat hypothalamic 5-HT7 receptor density without affecting any of the biochemical or behavioural measures. The results suggest that this antisense protocol could be a valuable tool to investigate central 5-HT7 receptor functions, and that this receptor is not critical for the control of neuroendocrine function or food intake.  相似文献   

13.
Activating Mutations of the Serotonin 5-HT2C Receptor   总被引:1,自引:1,他引:0  
Abstract: Site-directed mutagenesis was performed to create a mutant serotonin 5-HT2C receptor that would mimic the active conformation of the native receptor. Structural alteration of receptor conformation was achieved by changing amino acid no. 312 from serine to phenylalanine (S312F) or lysine (S312K). After expression in COS-7 cells, the binding affinity of 5-HT for [3H]-mesulergine-labeled 5-HT2C receptors increased from 203 n M (native) to 76 n M for S312F and 6.6 n M for S312K mutant receptors. 5-HT potency for stimulation of phosphatidylinositol (PI) hydrolysis increased from 70 n M (native) to 28 n M for S312F and 2.7 n M for S312K mutant receptors. The mutant receptors were constitutively active, stimulating PI hydrolysis in the absence of agonist. S312F and S312K mutations resulted in twofold and five-fold increases, respectively, in basal levels of PI hydrolysis. Mianserin and mesulergine displayed inverse agonist activity by decreasing basal levels of PI hydrolysis stimulated by S312K mutant receptors. [3H]5-HT and [3H]-mesulergine labeled the same number of S312K mutant receptors and 5'-guanylylimidodiphosphate had no effect on [3H]5-HT binding. These results indicate that serine → lysine mutation at amino acid no. 312 produces an agonist high-affinity state of the 5-HT2C receptor that spontaneously couples to G proteins and stimulates PI hydrolysis in the absence of agonist.  相似文献   

14.
Abstract: The characteristics of spiperone inhibition of [3H]5-hydroxytryptamine ([3H]5-HT; [3H]serotonin) binding were examined in dorsal (DH) and ventral (VH) hippocampus, corpus striatum (CS) or caudate nucleus (CN), and frontal cortex (FC) in the rabbit, guinea pig, and cat. Some of the properties of spiperone inhibition of [3H]5-HT binding in these species were similar to the properties previously found in the rat. Spiperone was significantly more potent in DH, VH, and FC than in CS or CN. It produced shallow or biphasic inhibition curves, resulting in Hill slopes of less than 1.0. Nonlinear regression analysis of the data showed that the inhibition curves fit a two-site binding model significantly better than a one-site model in each brain region. The dissociation constants of spiperone for the high-affinity binding site ( K H) for all the tissues and species, except cat FC and rabbit DH, were very close to those previously found in the rat (2-13 n M ). However, the dissociation constants for the low-affinity binding site ( K L) were different from those in the rat in all species and tissues examined, except cat FC and CS. The present data are consistent with the concept of multiple 5-HT1 binding sites and suggest the presence of at least two, and perhaps as many as three, groups of sites in the mammalian brain.  相似文献   

15.
Abstract: 5-Hydroxytryptamine elicits its physiological effects by interacting with a diverse group of receptors. Two of these receptors, the 5-HT1Dβ and the 5-HT1E receptors, are ∼60% identical in the transmembrane domains that presumably form the ligand binding site yet have very different pharmacological properties. Analysis of the pharmacological properties of a series of chimeric 5-HT1Dβ/5-HT1E receptors indicates that sequences in the sixth and seventh transmembrane domains are responsible for the differential affinity of 5-carboxamidotryptamine for these two receptors. More detailed analysis shows that two amino acid differences in the sixth transmembrane domain (Ile333 and Ser334 in the 5-HT1Dβ receptor, corresponding to Lys310 and Glu311 in the 5-HT1E receptor) are largely responsible for the differential affinities of some, but not all, ligands for the 5-HT1Dβ and 5-HT1E receptors. It is likely that these two amino acids subtly determine the overall three-dimensional structure of the receptor rather than interact directly with individual ligands.  相似文献   

16.
Cloning and Characterization of a Mouse σ1 Receptor   总被引:1,自引:1,他引:0  
Abstract: A cDNA clone (S2-1a) isolated from a mouse brain cDNA library, using a guinea pig σ1 cDNA as probe, has high homology to the predicted protein sequence of the guinea pig (88%) and human (90%) σ1 receptors. Northern analysis revealed a major mRNA of ∼1.8 kb in a wide range of mouse tissues, with highest levels in brain, liver, kidney, and thymus. Southern analysis and chromosomal mapping in the mouse suggested a single-copy gene in region A5-B2 of chromosome 4. Expression of the clone in MCF-7 and CHO cells led to a pronounced increase in (+)-[3H]pentazocine binding with a selectivity profile consistent with σ1 receptors. In vitro translation yielded a protein of ∼28 kDa, as did transfection of a probe containing the hemagglutinin (HA) epitope (S2-1a.HA) into CHO cells, as determined by western analysis using an antibody directed against HA. (+)-[3H]-Pentazocine binding to immunopurified HA-tagged receptor demonstrated conclusively that S2-1a.HA encodes a high-affinity (+)-[3H]pentazocine binding site with characteristics of a murine σ1 receptor. An antisense oligodeoxynucleotide designed from S2-1a potentiated opioid analgesia in vivo.  相似文献   

17.
Abstract : Single treatment with the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) and alnespirone (S-20499) reduces the extracellular 5-HT concentration (5-HText) in the rat midbrain and forebrain. Given the therapeutic potential of selective 5-HT1A agonists in the treatment of affective disorders, we have examined the changes in 5-HT1A receptors induced by 2-week minipump administration of alnespirone (0.3 and 3 mg/kg/day) and 8-OH-DPAT (0.1 and 0.3 mg/kg/day). The treatment with alnespirone did not modify baseline 5-HText but significantly attenuated the ability of 0.3 mg/kg s.c. alnespirone to reduce 5-HText in the dorsal raphe nucleus (DRN) and frontal cortex. In contrast, the ability of 8-OH-DPAT (0.025 and 0.1 mg/kg s.c.) to reduce 5-HText in both areas was unchanged by 8-OH-DPAT pretreatment. Autoradiographic analysis revealed a significant reduction of [3H]8-OH-DPAT and [3H]WAY-100635 {3H-labeled N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridyl)cyclohexanecarboxamide · 3HCl} binding to somatodendritic 5-HT1A receptors (but not to postsynaptic 5-HT1A receptors) of rats pretreated with alnespirone but not with 8-OH-DPAT. In situ hybridization analysis revealed no change of the density of the mRNA encoding the 5-HT1A receptors in the DRN after either treatment. These data indicate that continuous treatment for 2 weeks with alnespirone, but not with 8-OH-DPAT, causes a functional desensitization of somatodendritic 5-HT1A receptors controlling 5-HT release in the DRN and frontal cortex.  相似文献   

18.
Abstract— The specific binding of [3H]spiperone and [3H]domperidone, as defined by 1 μ m -(+)butaclamol, was compared in homogenates of bovine retina and caudate nucleus. Scatchard analyses of saturation data for [3H]spiperone binding yielded dissociation constants ( K d) of 0.35 n m in the retina and 0.64 n m in the caudate nucleus. Comparison of the maximum number of binding sites (Bmax) present in each tissue indicated that the density of sites in bovine caudate nucleus (270 fmol/mg protein) was approximately three times higher than in bovine retina (92 fmol/mg protein). This difference was even more marked in guinea pig tissues, with a ratio of 7:1 between corpus striatum and retina. The pharmacological analysis of [3H]spiperone binding in both the bovine retina and caudate nucleus indicated an interaction with dopaminergic rather than serotonergic sites. However, inhibition curves obtained to dopaminergic agonists in the bovine retina were significantly steeper than those observed in the bovine caudate nucleus, as reflected in the greater Hill coefficients obtained for these agents in the retina. Furthermore, only a small amount of specific [3H]domperidone binding was observed in either the bovine caudate nucleus or the guinea pig striatum, whilst no specific [3H]domperidone binding was detectable in homogenates of either bovine or guinea pig retina. These data suggest that the retina possesses only a small population of dopaminergic D2 sites and that these binding sites may differ from those present in the caudate nucleus.  相似文献   

19.
We evaluated the effect of haloperidol (HP) and its metabolites on [3H](+)-pentazocine binding to σ1 receptors in SH-SY5Y human neuroblastoma cells and guinea pig brain P1, P2 and P3 subcellular fractions. Three days after a single i.p. injection in guinea pigs of HP (but not of other σ1 antagonists or (−)-sulpiride), [3H](+)-pentazocine binding to brain membranes was markedly decreased. Recovery of σ1 receptor density to steady state after HP-induced inactivation required more than 30 days. HP-metabolite II (reduced HP, 4-(4-chlorophenyl)-α-(4-fluorophenyl)-4-hydroxy-1-piperidinebutanol), but not HP-metabolite I (4-(4-chlorophenyl)-4-hydroxypiperidine), irreversibly blocked σ1 receptors in guinea pig brain homogenate and P2 fraction in vitro . We found similar results in SH-SY5Y cells, which suggests that this process may also take place in humans. HP irreversibly inactivated σ1 receptors when it was incubated with brain homogenate and SH-SY5Y cells, but not when incubated with P2 fraction membranes, which suggests that HP is metabolized to inactivate σ1 receptors. Menadione, an inhibitor of the ketone reductase activity that leads to the production of HP-metabolite II, completely prevented HP-induced inactivation of σ1 receptors in brain homogenates. These results suggest that HP may irreversibly inactivate σ1 receptors in guinea pig and human cells, probably after metabolism to reduced HP.  相似文献   

20.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号