首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coding regions of double stranded RNA molecules from 3 human faecal samples containing Cryptosporidium hominis, C. felis and C. meleagridis were characterised by sequencing and compared with that previously obtained for C. parvum. Sequences outside the coding regions were also obtained. Overall similarities of between 86% and 92% and between 86% and 93% were observed in the nucleotide and amino acid sequences respectively between these species. These larger sequences will allow further molecular tools for detection, identification and characterisation of Cryptosporidium spp.  相似文献   

2.
To assess the genetic diversity and evolution of Cryptosporidium parasites, the partial ssrRNA, actin, and 70 kDa heat shock protein (HSP70) genes of 15 new Cryptosporidium parasites were sequenced. Sequence data were analysed together with those previously obtained from other Cryptosporidium parasites (10 Cryptosporidium spp. and eight Cryptosporidium genotypes). Results of this multi-locus genetic characterisation indicate that host adaptation is a general phenomenon in the genus Cryptosporidium, because specific genotypes were usually associated with specific groups of animals. On the other hand, host–parasite co-evolution is also common in Cryptosporidium, as closely related hosts usually had related Cryptosporidium parasites. Results of phylogenetic analyses suggest that the Cryptosporidium parvum bovine genotype and Cryptosporidium meleagridis were originally parasites of rodents and mammals, respectively, but have subsequently expanded their host ranges to include humans. Understanding the evolution of Cryptosporidium species is important not only for clarification of the taxonomy of the parasites but also for assessment of the public health significance of Cryptosporidium parasites from animals.  相似文献   

3.
Soba B  Logar J 《Parasitology》2008,135(11):1263-1270
To assess the importance of cattle as a source of human cryptosporidial infections in Slovenia, Cryptosporidium isolates from calves and humans with cryptosporidiosis were characterized genetically by direct DNA sequencing, targeting a variable region of the 60 subtypes', were identified, of which 7 were novel. In humans, C. hominis Ia (subtype IaA17R3) and Ib (IbA10G2) and Cryptosporidium parvum IIa (IIaA9G1R1, IIaA11G2R1, IIaA13R1, IIaA14G1R1, IIaA15G1R1, IIaA15G2R1, IIaA16G1R1, IIaA17G1R1 and IIaA19G1R1), IIc (IIcA5G3), and IIl (IIlA16R2) were recorded; this is the first record of the latter subtype in humans. In cattle, C. parvum IIa (IIaA13R1, IIaA15G2R1, IIaA16R1 and IIaA16G1R1) and IIl (IIlA16R2 and IIlA18R2) were recorded. Of the 15 subtypes identified, subtypes of C. parvum IIa were the most frequently encountered (>90%) in both humans and calves. The present findings suggest that zoonotic transmission plays an important role in sporadic human cryptosporidiosis in Slovenia.  相似文献   

4.
We developed an immunocapture-based polymerase chain reaction (PCR) assay for simultaneous detection of Cryptosporidium parvum oocysts and Giardia intestinalis cysts in surface water. Using primer pairs Cry9/Cry15 and LaxA/LaxB for Cryptosporidium and Gdh1/Gdh4 for Giardia, the sensitivity of the entire detection procedure (dealing with concentration, separation, DNA purification and PCR amplification) was at the level of 50–100 oocysts and cysts. Of 54 surface water samples, 4 were positive for Cryptosporidium and 1 for Giardia. Cryptosporidium and Giardia were detected for the first time in surface water in Finland.  相似文献   

5.
6.
Parasites from the Cryptosporidium genus are the most common cause of waterborne disease around the world. Successful management and prevention of this emerging disease requires knowledge of the diversity of species causing human disease and their zoonotic sources. This study employed a spatiotemporal approach to investigate sporadic human cryptosporidiosis in New South Wales, Australia, between January 2008 and December 2010. Analysis of 261 human fecal samples showed that sporadic human cryptosporidiosis is caused by four species; C. hominis, C. parvum, C. andersoni, and C. fayeri. Sequence analysis of the gp60 gene identified 5 subtype families and 31 subtypes. Cryptosporidium hominis IbA10G2 and C. parvum IIaA18G3R1 were the most frequent causes of human cryptosporidiosis in New South Wales, with 59% and 16% of infections, respectively, attributed to them. The results showed that infections were most prevalent in 0- to 4-year-olds. No gender bias or regional segregation was observed between the distribution of C. hominis and C. parvum infections. To determine the role of cattle in sporadic human infections in New South Wales, 205 cattle fecal samples were analyzed. Four Cryptosporidium species were identified, C. hominis, C. parvum, C. bovis, and C. ryanae. C. parvum subtype IIaA18G3R1 was the most common cause of cryptosporidiosis in cattle, with 47% of infections attributed to it. C. hominis subtype IbA10G2 was also identified in cattle isolates.  相似文献   

7.
Optimised immunomagnetic separation methods to detect Cryptosporidium parvum and Escherichia coli O157 in UK shellfish are described. Whole tissue homogenates gave the best recoveries for C. parvum oocysts compared with gill or haemolymph extracts. The sensitivity of recovery from spiked samples was comparable to that achieved when processing water and varied from 12–34% in mussels, 48–69.5% in oysters and 30–65% in scallops. Maximum recovery of E. coli O157 was achieved by enriching in buffered peptone water supplemented with vancomycin at 42 °C. Increasing enrichment temperatures from 37 to 42 °C gave a significant increase in target number recovery. Implementation of these methods into monitoring programmes and end-product testing will enable shellfish producers to better assess product safety.  相似文献   

8.
Faecal specimens from 287 diarrhoeic calves younger than 21 days, collected over a 2-year period (2006-2007) from 82 dairy cattle farms in 14 provinces across the north of Spain, were examined for the presence of Cryptosporidium oocysts. Overall, 63 farms (76.8%) and 166 calves (57.8%) tested positive by microscopy. In order to elucidate the genetic diversity, selected positive specimens from 149 calves originating from 61 farms in the 14 provinces were examined by genotyping and subtyping techniques. Cryptosporidium parvum was the only species identified by PCR-RFLP of SSU rDNA from all 149 isolates and sequencing of a subset of 50 isolates, except for 2 specimens that were identified as C. bovis. Sequence analyses of the glycoprotein (GP60) gene revealed that most C. parvum isolates (98%) belonged to the subtype family IIa and 2 isolates were identified as the novel subtype IIdA23G1. Subtype IIaA15G2R1 was the most common and widely distributed (80.3% of the 61 farms), followed by subtype IIaA16G3R1 (14.7%), whereas the remaining IIa subtypes (IIaA16G2R1, IIaA17G2R1, IIaA18G3R1, IIaA19G3R1) were restricted to 1-3 farms. All these C. parvum IIa subtypes have previously been described in human patients, indicating that most isolates from diarrhoeic calves in northern Spain have zoonotic potential.  相似文献   

9.
Iqbal A  Lim YA  Surin J  Sim BL 《PloS one》2012,7(2):e31139

Background

Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients.

Methodology/Principal Findings

In this study, 346 faecal samples collected from Malaysian HIV positive patients were genetically analysed via PCR targeting the 60 kDa glycoprotein (gp60) gene. Eighteen (5.2% of 346) isolates were determined as Cryptosporidium positive with 72.2% (of 18) identified as Cryptosporidium parvum whilst 27.7% as Cryptosporidium hominis. Further gp60 analysis revealed C. parvum belonging to subgenotypes IIaA13G1R1 (2 isolates), IIaA13G2R1 (2 isolates), IIaA14G2R1 (3 isolates), IIaA15G2R1 (5 isolates) and IIdA15G1R1 (1 isolate). C. hominis was represented by subgenotypes IaA14R1 (2 isolates), IaA18R1 (1 isolate) and IbA10G2R2 (2 isolates).

Conclusions/Significance

These findings highlighted the presence of high diversity of Cryptosporidium subgenotypes among Malaysian HIV infected individuals. The predominance of the C. parvum subgenotypes signified the possibility of zoonotic as well as anthroponotic transmissions of cryptosporidiosis in HIV infected individuals.  相似文献   

10.
Cryptosporidium is an enteric parasite of public health significance that causes diarrhoeal illness through faecal oral contamination and via water. Zoonotic transmission is difficult to determine as most species of Cryptosporidium are morphologically identical and can only be differentiated by molecular means. Transmission dynamics of Cryptosporidium in rural populations were investigated through the collection of 196 faecal samples from diarrheic (scouring) calves on 20 farms and 63 faecal samples from humans on 14 of these farms. The overall prevalence of Cryptosporidium in cattle and humans by PCR and sequence analysis of the 18S rRNA was 73.5% (144/196) and 23.8% (15/63), respectively. Three species were identified in cattle; Cryptosporidium parvum, Cryptosporidium bovis and Cryptosporidium ryanae, and from humans, C. parvum and C. bovis. This is only the second report of C. bovis in humans. Subtype analysis at the gp60 locus identified C. parvum subtype IIaA18G3R1 as the most common subtype in calves. Of the seven human C. parvum isolates successfully subtyped, five were IIaA18G3R1, one was IIdA18G2 and one isolate had a mix of IIaA18G3R1 and IIdA19G2. These findings suggest that zoonotic transmission may have occurred but more studies involving extensive sampling of both calves and farm workers are needed for a better understanding of the sources of Cryptosporidium infections in humans from rural areas of Australia.  相似文献   

11.
Cryptosporidiosis is a parasitic disease caused by Cryptosporidium spp. In immunocompetent individuals, it usually causes an acute and self-limited diarrhea; in infants, infection with Cryptosporidium spp. can cause malnutrition and growth retardation, and declined cognitive ability. In this study, we described for the first time the distribution of C. parvum and C. hominis subtypes in 12 children in Mexico by sequence characterization of the 60-kDa glycoprotein (GP60) gene of Cryptosporidium. Altogether, 7 subtypes belonging to 4 subtype families of C. hominis (Ia, Ib, Id and Ie) and 1 subtype family of C. parvum (IIa) were detected, including IaA14R3, IaA15R3, IbA10G2, IdA17, IeA11G3T3, IIaA15G2R1 and IIaA16G1R1. The frequency of the subtype families and subtypes in the samples analyzed in this study differed from what was observed in other countries.  相似文献   

12.

Background

Whole genome sequencing (WGS) of Cryptosporidium spp. has previously relied on propagation of the parasite in animals to generate enough oocysts from which to extract DNA of sufficient quantity and purity for analysis. We have developed and validated a method for preparation of genomic Cryptosporidium DNA suitable for WGS directly from human stool samples and used it to generate 10 high-quality whole Cryptosporidium genome assemblies. Our method uses a combination of salt flotation, immunomagnetic separation (IMS), and surface sterilisation of oocysts prior to DNA extraction, with subsequent use of the transposome-based Nextera XT kit to generate libraries for sequencing on Illumina platforms. IMS was found to be superior to caesium chloride density centrifugation for purification of oocysts from small volume stool samples and for reducing levels of contaminant DNA.

Results

The IMS-based method was used initially to sequence whole genomes of Cryptosporidium hominis gp60 subtype IbA10G2 and Cryptosporidium parvum gp60 subtype IIaA19G1R2 from small amounts of stool left over from diagnostic testing of clinical cases of cryptosporidiosis. The C. parvum isolate was sequenced to a mean depth of 51.8X with reads covering 100 % of the bases of the C. parvum Iowa II reference genome (Bioproject PRJNA 15586), while the C. hominis isolate was sequenced to a mean depth of 34.7X with reads covering 98 % of the bases of the C. hominis TU502 v1 reference genome (Bioproject PRJNA 15585).The method was then applied to a further 17 stools, successfully generating another eight new whole genome sequences, of which two were C. hominis (gp60 subtypes IbA10G2 and IaA14R3) and six C. parvum (gp60 subtypes IIaA15G2R1 from three samples, and one each of IIaA17G1R1, IIaA18G2R1, and IIdA22G1), demonstrating the utility of this method to sequence Cryptosporidium genomes directly from clinical samples. This development is especially important as it reduces the requirement to propagate Cryptosporidium oocysts in animal models prior to genome sequencing.

Conclusion

This represents the first report of high-quality whole genome sequencing of Cryptosporidium isolates prepared directly from human stool samples.  相似文献   

13.
Cryptosporidium spp. are enteric protozoan parasites that infect a wide range of hosts including humans, and domestic and wild animals. The aim of this study was to molecularly characterize the Cryptosporidium spp. found in calf faeces in Japan. A total of 80 pre-weaned beef and dairy calves' diarrhoeic faecal specimens were collected from nine different prefectures in Japan. A nested polymerase chain reaction targeting the small subunit 18S rRNA and GP60 genes were used to detect the Cryptosporidium genotypes and subtypes. 83.8% (67 out of 80) of the specimens were positive for Cryptosporidium spp.; Cryptosporidium was found in both beef and dairy calves. Cryptosporidium parvum was the predominant species, detected in 77.5% (31/40) of beef calves and 80% (32/40) of dairy calves. Cryptosporidium bovis was also detected, 5.0% (2/40) of dairy calves, and C. ryanae was also found 2.5% (1/40) of dairy calves. One mixed-species infection, 2.5% (1/40) was detected in a beef calf having C. parvum, and C. ryanae. We detected the most common subtype of C. parvum (i.e., IIaA15G2R1), as well as other subtypes (i.e., IIaA14G3R1, IIaA14G2R1, and IIaA13G1R1) that have not previously been detected in calves in Japan. Our results demonstrate the widespread diversity of Cryptosporidium infection in calves in Japan.  相似文献   

14.
The subtype IIaA15G2R1 at the 60 kDa glycoprotein (gp60) gene locus is the most dominant Cryptosporidium parvum infecting dairy cattle and humans in industrialised nations. The reasons for its high transmissibility are not clear, and it remains to be determined whether this subtype represents a homogeneous parasite population. In this study, we sequence-characterised 26 IIaA15G2R subtype specimens and 26 non-IIaA15G2R subtype specimens from the United States, Canada, United Kingdom and Spain at seven other known polymorphic loci, including CP47, CP56, DZ-HRGP, MSC6-5, MSC6-7, RPGR and ZPT. Extensive heterogeneity within IIaA15G2R1 and discordance in typing results between gp60 and other genetic markers were observed. Results of inter-locus and intra-ZPT linkage disequilibrium and recombination analyses indicated that the heterogeneity within IIaA15G2R1 and discordance in typing results among genetic loci were largely due to the occurrence of genetic recombination, mostly within the gp60 subtype IIaA15G2R1. Although there was no clear population diversion between IIaA15G2R and non-IIaA15G2R subtypes, results of STRUCTURE and FST analyses suggested the presence of at least two subpopulations; subpopulation 1 had an epidemic population structure and was widely distributed, whereas subpopulation 2 had a clonal population structure and consisted of geographically segregated multilocus subtypes. Genetic recombination between epidemic and geographically segregated C. parvum populations appeared to be a driving force in the emergence of a hyper-transmissible IIaA15G2R1 subtype. Genetic recombination was observed even between the zoonotic IIa subtype family and anthroponotic subtype family IIc at CP56, MSC6-7 and ZPT. Thus, the IIaA15G2R1 subtype at gp60 is likely a fitness marker for C. parvum and the wide spread of IIaA15G2R1 subtype around the world is probably independent of the sequence characteristics at other genetic loci.  相似文献   

15.
In the present study, we determined the sequence of group I self-splicing introns found in the large ribosomal RNA subunit of Candida albicans, Candida stellatoidea and the recently-described species Candida dubliniensis. It was found that both the intron and ribosomal RNA nucleotide sequences are almost perfectly identical between different C. albicans strains as well as between C. albicans and C. stellatoidea strains. Comparisons of ribosomal RNA sequences suggest that local isolates of atypical C. albicans from individuals infected with human immunodeficiency virus can be assigned to the C. dubliniensis species. C. dubliniensis strains also harbor a group I intron in their ribosomal RNA, as observed in about 40% of C. albicans strains and all C. stellatoidea strains. This novel C. dubliniensis group I intron is identical to the C. albicans and C. stellatoidea intron, except for two widely divergent stem-loop regions. Despite these differences, the C. dubliniensis intron possesses self-splicing ability in an in vitro assay. Taken together, these data support the idea that C. albicans and C. stellatoidea should be joined together as variants of the same species while C. dubliniensis is a distinct but closely related microorganism. To our knowledge, the C. albicans and C. dubliniensis introns are the first example of a pair of homologous group I introns differing only by the presence of apparently facultative sequences in some stem-loops suspected to be involved in stabilization of tertiary structure.  相似文献   

16.
This study assessed the prevalence, species and subtypes of Cryptosporidium in goats from Guangdong Province, Hubei Province, Shandong Province, and Shanghai City of China. Six hundred and four fecal samples were collected from twelve goat farms, and the overall infection rate was 11.4% (69/604). Goats infected with Cryptosporidium were found in eleven farms across four provincial areas, and the infection rate ranged from 2.9% (1/35) to 25.0% (9/36). Three Cryptosporidium species were identified. Cryptosporidium xiaoi (45/69, 65.2%) was the dominant species, followed by C. parvum (14/69, 20.3%) and C. ubiquitum (10/69, 14.5%). The infection rate of Cryptosporidium spp. was varied with host age and goat kids were more susceptible to be infected than adult goats. Subtyping C. parvum and C. ubiquitum positive samples revealed C. parvum subtype IIdA19G1 and C. ubiquitum subtype XIIa were the most common subtypes. Other C. parvum subtypes were detected as well, such as IIaA14G2R1, IIaA15G1R1, IIaA15G2R1 and IIaA17G2R1. All of these subtypes have also been detected in humans, suggesting goats may be a potential source of zoonotic cryptosporidiosis. This was the first report of C. parvum subtypes IIaA14G2R1, IIaA15G1R1 and IIaA17G2R1 infecting in goats and the first molecular identification of C. parvum and its subtypes in Chinese goats.  相似文献   

17.
A collection of 140 Cryptosporidium parvum isolates previously analyzed by PCR-restriction fragment length polymorphism (PCR-RFLP) and sequence analyses of the small-subunit (SSU) rRNA and 60-kDa glycoprotein (GP60) genes was further characterized by multilocus fragment typing of six minisatellite (MSB and MS5) and microsatellite (ML1, ML2, TP14, and 5B12) loci. Isolates were collected from diarrheic preweaned calves originating from 61 dairy cattle farms in northern Spain. A capillary electrophoresis-based tool combining three different fluorescent tags was used to analyze all six satellites in one capillary. Fragment sizes were adjusted after comparison with sizes obtained by sequence analysis of a selection of isolates for every allele. Size discrepancies at all but the 5B12 locus were found for those isolates that were typed by both techniques, although identical size differences were reported for every allele within each locus. A total of eight alleles were seen at the ML2 marker, which contributed the most to the discriminatory power of the multilocus approach. Multilocus fragment typing clearly improved the discriminatory power of GP60 sequencing, since a total of 59 multilocus subtypes were identified based on the combination of alleles at the six satellite loci, in contrast to the 7 GP60 subtypes previously reported. The majority of farms (38) displayed a unique multilocus subtype, and individual isolates with mixed multilocus subtypes were seen at 22 farms. Bayesian structure analysis based on combined data for both satellite and GP60 loci suggested the presence of two major clusters among the C. parvum isolates from cattle farms in this geographical area.  相似文献   

18.
Yang X  Yuan J  Sun J  Wang H  Liang H  Bai Y  Guo L  Tan H  Yang M  Wang J  Su J  Chen Y  Tanguay RM  Wu T 《Mutation research》2008,649(1-2):221-229
Hsp70 has been shown to act as a chaperone and be associated with cytoprotection against DNA damage caused by environmental stresses. However, it is unknown whether genetic variation in HSP70 plays a role in stress tolerance and cytoprotection against DNA damage. We determined the frequencies of three polymorphisms, HSP70-1 G190C, HSP70-2 G1267A, and HSP70-hom T2437C from 251 steel-plant workers exposed to coke-oven emission and 130 controls. We estimated the association between the HSP70variants/haplotypes and the levels of DNA damage in their peripheral blood lymphocytes detected by single-cell gel electrophoresis assay. Our results showed that overall coke-oven workers had higher levels of the Olive tail moment (Olive TM) (1.27+/-1.12) than that of the controls (0.56+/-0.99, P<0.001). Coke-oven workers with the HSP70-1 C/C genotype had higher levels of Olive TM (2.19+/-0.65), compared with HSP70-1 G/C and G/G carriers (Olive TM=1.34+/-1.09 and 1.14+/-1.08, respectively, P=0.022 and 0.003, respectively). However, the HSP70-2 G1267A and HSP70-hom T2437C polymorphisms were not associated with the levels of Olive TM (P=0.929 and 0.795, respectively). Haplotype analysis showed that carriers of TCG/TCG haplotype pairs had the highest levels of Olive TM among both the exposed subjects (2.04+/-0.59) and the controls (0.81+/-0.59). Our results suggest that the individuals with the homozygous HSP70-1 C/C genotype among the coke-oven workers may be susceptible to DNA damage.  相似文献   

19.
Cryptosporidium hominis, which has an anthroponotic transmission cycle and Cryptosporidium parvum, which is zoonotic, are the primary species of Cryptosporidium that infect humans. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 7 human and 15 cattle cases of sporadic cryptosporidiosis in rural western NSW during the period from November 2005 to January 2006. The species/genotype of isolates was determined by PCR sequence analysis of the 18S rRNA and C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Fourteen of 15 cattle-derived isolates were identified as C. parvum and 1 as a C. bovis/C. parvum mixture. Of the human isolates, 4 were C. parvum and 3 were C. hominis. Two different subgenotypes were identified with the human C. hominis isolates and six different subgenotypes were identified within the C. parvum species from humans and cattle. All four of the C. parvum subtypes found in humans were also found in the cattle, indicating that zoonotic transmission may be an important contributor to sporadic human cases cryptosporidiosis in rural NSW.  相似文献   

20.
The studies on Cryptosporidium infections of animals in Turkey mostly rely on microscopic observation. Few data are available regarding the prevalence of Cryptosporidium genotypes and subtypes infection. The aim of this study is to analyse the detection of Cryptosporidium genotypes and subtypes from young ruminants. A total of 415 diarrheic fecal specimens from young ruminants were examined for the Cryptosporidium detection by use of nested PCR of the small subunit ribosomal RNA (SSU rRNA) gene and the highly polymorphic 60 kDa glycoprotein (gp60) gene followed by sequence analyses. The results of this study revealed that 25.6% (106 of 415) of the specimens were positive for Cryptosporidium spp. infection. We identified 27.4% (91/333), 19.4% (13/67), and 13.4% (2/15) of positivity in calves, lambs and goat kids, respectively. Genotyping of the SSU rRNA indicated that almost all positive specimens were of C. parvum, except for one calf which was of C. bovis. Sequence analysis of the gp60 gene revealed the most common zoonotic subtypes (IIa and IId) of C. parvum. We detected 11 subtypes (IIaA11G2R1, IIaA11G3R1, IIaA12G3R1, IIaA13G2R1, IIaA13G4R1, IIaA14G1R1, IIaA14G3R1, IIaA15G2R1, IIdA16G1, IIdA18G1, IIdA22G1); three of them (IIaA12G3R1, IIaA11G3R1 and IIaA13G4R1) was novel subtypes found in calves and lambs. Additionally, three subtypes (IIaA11G2R1, IIaA14G3R1, and IIdA16G1) were detected in young ruminants for the first time in Turkey. These results indicate the high infection of Cryptosporidium in Turkey and propose that young ruminants are likely a major reservoir of C. parvum and a potential source of zoonotic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号