首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Life history theory generally predicts a trade-off between shortjuvenile development and large adult size, assuming invariant growth rates within species. This pivotal assumption has been explicitly tested in few organisms. 2. We studied ontogeny in 13 populations of Omocestus viridulus grasshoppers under common garden conditions. High-altitude populations, facing short growing seasons and thus seasonal time constraints, were found to grow at a similar rate to low altitude conspecifics. 3. Instead, high-altitude grasshoppers evolved faster development, and the correlated change in body size led to an altitudinal size cline mediating a trade-off with female fecundity. 4. An additional juvenile stage occurred in low- but not high-altitude females. This difference is probably due to the evolution of lowered critical size thresholds in high-altitude grasshoppers to accelerate development. 5. We found a strikingly lower growth rate in males than females that we interpret as the outcome of concurrent selection for protandry and small male size. 6. Within populations, large individuals developed faster than small individuals, suggesting within-population genetic variation in growth rates. 7. We provide evidence that different time constraints (seasonal, protandry selection) can lead to different evolutionary responses in intrinsic growth, and that correlations among ontogenetic traits within populations cannot generally be used to predict life history adaptation among populations. Moreover, our study illustrates that comparisons of ontogenetic patterns can shed light on the developmental basis underlying phenotypic evolution.  相似文献   

2.
Ontogenetic shifts in microhabitat use are widespread among taxa and can result in drastic shifts in thermal habitat among age classes. Likewise, geographic variation in climate along latitudinal gradients can cause differences in thermal environments among populations of a species. Using a common garden design, we examined four populations of a single species of semi-aquatic snake, Nerodia rhombifer, to determine whether ontogenetic shifts in habitat use (and/or body size) and latitudinal differences in ambient temperature have resulted in evolutionary changes in thermal tolerance. We found ontogenetic differences in thermal tolerance for all populations, with neonates tolerating temperatures 2 degrees C higher than adults, a pattern that is consistent with ontogenetic shifts in body size and microhabitat use in this species. There were differences in thermal tolerance among latitudes in neonates, suggesting genetic differences among populations, but adults showed no latitudinal differences. In combination, the increased thermal tolerance of neonates and the age-specific response to latitude suggest individuals may be most sensitive to selection on thermal tolerance as neonates. Although latitudinal differences exist in neonates, their tolerances were not ranked according to latitude, suggesting the effects of some other local factor (e.g., microclimate) may be important. Lastly, among neonates, females tolerate higher temperatures than males.  相似文献   

3.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

4.
W. U. Blanckenhorn 《Oecologia》1997,109(3):342-352
 Field phenologies of high- (ca. 1500 m) and low- (ca. 500 m) altitude populations of the two most common European species of dung flies, Scathophaga stercoraria and Sepsis cynipsea, differ quite markedly due to differences in climate. To differentiate genetic adaptation due to natural selection and phenotypic plasticity, I compared standard life history characters of pairs of high- and low-altitude populations from three disjunctive sites in Switzerland in a laboratory experiment. The F1 rearing environment did not affect any of the variables of the F2 generation with which all experiments were conducted; hence, there were no carry-over or maternal effects. In Sc. stercoraria, high-altitude individuals were smaller but laid larger eggs; the latter may be advantageous in the more extreme (i.e. more variable and less predictable) high-altitude climate. Higher rearing temperature strongly decreased development time, body size and the size difference between males and females (males are larger), produced female-biased sex ratios and led to suboptimal adult emergence rates. Several of these variables also varied among the three sites, producing some interactions complicating the patterns. In Se. cynipsea, high-altitude females were marginally smaller, less long-lived and laid fewer clutches. Higher rearing temperature strongly decreased development time and body size but tended to increase the size difference between males and females (males are smaller); it also increased clutch size but decreased physiological longevity. Again, interpretation is complicated by variation across sites and some significant interactions. Overall, genetic adaptation to high-altitude conditions appears weak, probably prevented by substantial gene flow, and may be swamped by the effects of other geographic variables among populations. In contrast, phenotypic plasticity is extensive. This may be due to selection of flexible, multi-purpose genotypes. The results suggest that differences in season length between high- and low-altitude locations alone do not explain well the patterns of variation in phenology and body size. Received: 21 March 1996 / Accepted: 1 September 1996  相似文献   

5.
Captive studies and occasional trappings of wild individuals indicate that callitrichids have small size and body weight and lack sexual dimorphism. We compared body weights of captive and wild Callithrix jacchus obtained by repeatedly weighing subjects from two populations in Brazil. We obtained captive data by routinely weighing 138 individuals from the Universidade Federal do Rio Grande do Norte colony and wild data via regular trapping of 243 individuals in 15 free-ranging groups from IBAMA's field site in Nísia Floresta. We assigned all subjects to one of four age classes—infant, juvenile, subadult, and adult—according to their birth dates or size, reproductive status, and dental development. There is no significant difference between males and females in any of the four age classes, but captive subjects were heavier than wild ones in all age classes but infant. Reproductive and nonreproductive adult females showed no statistical difference in weight. These results accord with previous reports of lack of body size sexual dimorphism in common marmosets and suggest that differences between wild and captive common marmosets are not constitutional, but are instead a consequence of diet and physical activity. The absence of weight difference between reproductive and nonreproductive females suggests that any possible advantage from high rank is outweighed by the costs of reproduction in common marmosets.  相似文献   

6.
We investigated intraspecific variation in echolocation calls of the Cape horseshoe bat, Rhinolophus capensis, by comparing echolocation and associated morphological parameters among individuals from three populations of this species. The populations were situated in the center and at the western and eastern limits of the distribution of R. capensis. The latter two populations were situated in ecotones between vegetation biomes. Ecotone populations deviated slightly from the allometric relationship between body size and peak frequency for the genus, and there was no relationship between these variables within R. capensis. Nasal chamber length was the best predictor of peak frequency but not correlated with body size. The evolution of echolocation thus appears to have been uncoupled from body size in R. capensis. Furthermore, females used higher frequencies than males, which imply a potential social role for peak frequency. The differences in peak frequency may have originated from random founder effects and then compounded by genetic drift and/or natural selection. The latter may have acted directly on peak frequency altering skull parameters involved in echolocation independently of body size, resulting in the evolution of local acoustic signatures.  相似文献   

7.
In sex-role-reversed species, females compete for resources (e.g., mates) more intensively than do males. However, it remains unclear whether these species exhibit sex differences in the intensity of aggressive behavior in the context of within-sex contests. Cichlid fish in the genus Julidochromis exhibit intraspecific variation in mating systems, ranging from monogamy to cooperative polyandry with sex-role reversal. In the study reported here, we observed aggressive interactions among three same-sex individuals in Julidochromis regani in the laboratory and tested whether inter-female aggression was more intense than inter-male aggression. Although difference in body size strongly determined the direction of aggression in fish, aggression by a smaller-sized individuals toward larger ones was occasionally observed. This type of aggression was common between individuals of a similar body size (≤5 mm) and occurred more frequently among females than males. In contrast, differences in body size and sex did not affect the frequency of aggression by larger-sized individuals against smaller ones. Bidirectional aggression (i.e., mouth fighting) occurred frequently when two individuals had similar body size, and there was no difference in its frequency between sexes. However, temporal analysis showed that females performed bidirectional aggression more persistently than males. These sex differences in the intensity of intrasexual aggression could be the behavioral mechanisms underpinning cooperative polyandry.  相似文献   

8.
Stillwell RC  Fox CW 《Oecologia》2007,153(2):273-280
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.  相似文献   

9.
Sexual size dimorphism (SSD) is a common phenomenon caused by a variety of environmental and genetic mechanisms in animals. In the current study, we investigate the demography of a population of eastern fence lizards ( Sceloporus undulatus ) to compare age structure and survivorship between the sexes, and we examine growth rates of juveniles under both natural and controlled laboratory conditions to elucidate causes of SSD in this species. Furthermore, using our laboratory growth data, we examine the heritability of juvenile growth rates. Our results show that SSD develops in the field before the end of the first year of age (before sexual maturity) because juvenile females grow more rapidly than juvenile males. In the laboratory environment, however, we observed no sexual difference in growth rates for lizards up to the size of maturity in the field. Thus, sexual differences in growth rate and subsequent development of SSD in this population are highly plastic and subject to strong proximal control. We found high levels of additive genetic variance for juvenile growth, indicating a strong potential for selection to operate on juvenile growth rates. Our results indicate that selection on juvenile growth rate could account for differences in growth among populations but would not necessarily contribute to SSD within our population due to the high plasticity in growth rate.  相似文献   

10.
In addition to the well-studied evolutionary parameters of (1) phenotype-fitness covariance and (2) the genetic basis of phenotypic variation, adaptive evolution by natural selection requires that (3) fitness variation is effected by heritable genetic differences among individuals and (4) phenotype-fitness covariances must be, at least in part, underlain by genetic covariances. These latter two requirements for adaptive evolutionary change are relatively unstudied in natural populations. Absence of the latter requirements could explain stasis of apparently directionally selected heritable traits. We provide complementary analyses of selection and variation at phenotypic and genetic levels for juvenile growth rate in brook charr Salvelinus fontinalis in Freshwater River, Newfoundland, Canada. Contrary to the vast majority of reports in fish, we found very little viability selection of juvenile body size. Large body size appears nonetheless to be selectively advantageous via a relationship with early maturity. Genetic patterns in evolutionary parameters largely reflected phenotypic patterns. We have provided inference of selection based on longitudinal data, which are uncommon in high fecundity organisms. Furthermore we have provided a practicable framework for further studies of the genetic basis of natural selection.  相似文献   

11.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

12.
This study documents substantial variation in reproductive traits among populations of stream-dwelling brown trout ( Salmo trutta L.) at a very small geographic scale. Within two streams, we found a parallel pattern of variation, where females living above major waterfalls produced fewer and larger eggs than conspecifics from below the waterfalls. Four additional streams were represented with either a below-waterfall site ( n =2) or an above-waterfall site ( n =2). When these streams were included in the analyses, there was no consistent difference in reproductive traits between females from above- and below-waterfall sites. There was no significant difference in total reproductive investment among sites within streams, but considerable variation among streams. Female first-year growth rates was estimated from scales, and differed significantly among populations. Within streams, females from below waterfalls experienced higher first-year growth rates as compared to females from above the waterfalls. Within seven out of eight populations, egg size increased significantly with increasing female body length. Within three populations, we found evidence for a trade-off between offspring size and offspring number, as a negative association between fecundity and egg size independently of adult body size. Within three populations egg size decreased significantly with increasing maternal first-year growth, independently of adult body size. We suggest that the within-stream differences in offspring size/number strategies are influenced by population density and growth effects. Earlier, we have shown that population densities are consistently lower below the waterfalls in these streams. The Alpine bullhead ( Cottus poecilopus ) is found only below the waterfalls and could influence brown trout demography.  相似文献   

13.
Although evidence that reptiles exhibit indeterminate growth remains equivocal and based on inadequate data, the assumption that they do is still widely accepted as a general trait of reptiles. We examined patterns of variation in adult growth using long-term mark-recapture data on 13 populations of 9 species representing 3 families of freshwater turtles located in South Carolina, Michigan, and Arizona in the USA and in Ontario, Canada. Across 13 study populations, growth rates of all adults and only those that grew averaged 1.5 and 1.9 mm/yr respectively. Sources of variation in growth rates included species, population, sex, age, and latitude. Most adults of both sexes with recapture intervals greater than 10 years grew, but across all populations an average of 19 % of individuals did not grow (some with recapture intervals up to 30 years). For known-age adults of three species, the highest growth rates occurred during the 10 years following sexual maturity, and the proportions of non-growing individuals increased with age. Growth rates of adults were on average 92 % lower than those of juveniles. Based on linear relationships of clutch size and body size of females at average juvenile and adult growth rates it would take 0.7 (0.2–1.2) years and 8.6 (min–max = 2.3–18.5) years, respectively, to grow enough to increase clutch size by one egg. The majority of within population variation in adult body size in 3 species appeared to be a combination of differences in ages at maturity and juvenile and early adult growth, rather than indeterminate growth. The results from our study populations indicate that increases in body size (and associated reproductive output) that results from indeterminate growth are not substantial enough to represent a major factor in the evolution of life histories in general or the evolution of longevity and aging specifically.  相似文献   

14.
Field studies indicate that the influence of environmental factors on growth rate and size and age at maturity in sailfin mollies (Poecilia latipinna) is inconsistent over time and suggest that the marked interdemic variation in male body size in this species is the result of genetic variation. However, the role of specific environmental factors in generating phenotypic variation must be studied under controlled conditions unattainable in nature. We raised newborn sailfin mollies from four populations in laboratory aquaria under all possible combinations of two temperatures, three salinities, and two food levels to examine explicitly the influence of these environmental factors. Males were much less susceptible than females to temperature variation and were generally less plastic than females in terms of all three traits. Members of both sexes matured at larger sizes and at later ages in less saline and in cooler environments. Food levels were not sufficiently different to affect the traits we studied. The effects of temperature and salinity were not synergistic. Males from different populations exhibited different average ages and sizes at maturity, but females did not. The magnitudes of the effects we found were not substantial enough to account for the consistent interdemic differences in male and female body size that have been observed previously. Our results also indicate that no single environmental factor is solely responsible for the environmental effects observed in field experiments on growth and development. These studies, together with other work, indicate that the strongest sources of interdemic variation are genetic differences in males and differences in postmaturation growth and survivorship in females.  相似文献   

15.
Fox CW  Bush ML  Roff DA  Wallin WG 《Heredity》2004,92(3):170-181
The age at which individuals die varies substantially within and between species, but we still have little understanding of why there is such variation in life expectancy. We examined sex-specific and genetic variation in adult lifespan and the shape of mortality curves both within and between two populations of the seed beetle, Callosobruchus maculatus, that differ in a suite of life history characters associated with adaptation to different host species. Mean adult lifespan and the shape of the logistic mortality curves differed substantially between males and females (males had lower initial mortality rates, but a faster increase in the rate of mortality with increasing age) and between populations (they differed in the rate of increase in mortality with age). Larger individuals lived longer than smaller individuals, both because they had lower initial mortality rates and a slower increase in the rate of mortality with increasing age. However, differences in body size were not adequate to explain the differences in mortality between the sexes or populations. Both lifespan and mortality rates were genetically variable within populations and genetic variance/covariance matrices for lifespan differed between the populations and sexes. This study thus demonstrated substantial genetic variation in lifespan and mortality rates within and between populations of C. maculatus.  相似文献   

16.
Yue GH  Xia JH  Liu F  Lin G 《PloS one》2012,7(6):e37976
Movement of individuals influences individual reproductive success, fitness, genetic diversity and relationships among individuals within populations and gene exchange among populations. Competition between males or females for mating opportunities and/or local resources predicts a female bias in taxa with monogamous mating systems and a male-biased dispersal in polygynous species. In birds and mammals, the patterns of dispersal between sexes are well explored, while dispersal patterns in protandrous hermaphroditic fish species have not been studied. We collected 549 adult individuals of Asian seabass (Lates calcarifer) from four locations in the South China Sea. To assess the difference in patterns of dispersal between sexes, we genotyped all individuals with 18 microsatellites. Significant genetic differentiation was detected among and within sampling locations. The parameters of population structure (F(ST)), relatedness (r) and the mean assignment index (mAIC), in combination with data on tagging-recapture, supplied strong evidences for female-biased dispersal in the Asian seabass. This result contradicts our initial hypothesis of no sex difference in dispersal. We suggest that inbreeding avoidance of females, female mate choice under the condition of low mate competition among males, and male resource competition create a female-biased dispersal. The bigger body size of females may be a cause of the female-biased movement. Studies of dispersal using data from DNA markers and tagging-recapture in hermaphroditic fish species could enhance our understanding of patterns of dispersal in fish.  相似文献   

17.
Evolutionary responses to selection can be complicated when there is substantial nonadditivity, which limits our ability to extrapolate from simple models of selection to population differentiation and speciation. Studies of Drosophila melanogaster indicate that lifespan and the rate of senescence are influenced by many genes that have environment- and sex-specific effects. These studies also demonstrate that interactions among alleles (dominance) and loci (epistasis) are common, with the degree of interaction differing between the sexes and among environments. However, little is known about the genetic architecture of lifespan or mortality rates for organisms other than D. melanogaster. We studied genetic architecture of differences in lifespan and shapes of mortality curves between two populations of the seed beetle, Callosobruchus maculatus (South India and Burkina Faso populations). These two populations differ in various traits (such as body size and adult lifespan) that have likely evolved via host-specific selection. We found that the genetic architecture of lifespan differences between populations differs substantially between males and females; there was a large maternal effect on male lifespan (but not on female lifespan), and substantial dominance of long-life alleles in females (but not males). The large maternal effect in males was genetically based (there was no significant cytoplasmic effect) likely due to population differences in maternal effects genes that influence lifespan of progeny. Rearing host did not affect the genetic architecture of lifespan, and there was no evidence that genes on the Y-chromosome influence the population differences in lifespan. Epistatic interactions among loci were detectable for the mortality rate of both males and females, but were detectable for lifespan only after controlling for body size variation among lines. The detection of epistasis, dominance, and sex-specific genetic effects on C. maculatus lifespan is consistent with results from line cross and quantitative trait locus studies of D. melanogaster.  相似文献   

18.
Sexual size dimorphism (SSD) is a common phenomenon in animals and varies widely among species and among populations within species. Much of this variation is likely due to variance in selection on females vs. males. However, environmental variables could have different effects on females vs. males, causing variation in dimorphism. In this study, we test the differential‐plasticity hypothesis, stating that sex‐differential plasticity to environmental variables generates among‐population variation in the degree of sexual dimorphism. We examined the effect of temperature (22, 25, 28, and 31 °C) on sexual dimorphism in four populations of the cockroach Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), collected at various latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31 °C) and smallest at the lowest temperature (22 °C). There is variation in the degree of SSD among populations (sex*population interaction), but differences between the sexes in their plastic responses (sex*temperature interaction) were not observed for body size. Our results indicated that sex‐differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.  相似文献   

19.
Saran Twombly  Nancy Tisch 《Oikos》2002,97(2):213-222
Metamorphosis is a common life-cycle transition in organisms as diverse as amphibians, insects, fishes and crustaceans, and the timing of this transition often affects an individual's fitness. Here, we measured age and size at metamorphosis in laboratory-reared individuals of the freshwater copepod, Diaptomus leptopus , and then followed individuals over their entire life cycle to assess the fitness consequences of variation in age and size at metamorphosis. In 3 separate experiments, individuals were raised in different food conditions: low food (0.2 μg C/ml) switched to high food (0.7 μg C/ml), or high food switched to low food, at several different larval and juvenile stages. Control individuals were reared on high or low food concentrations over their entire life cycles. For each individual, we measured age and size at metamorphosis and age and size at maturity; for females, we also measured total lifetime egg production, longevity, and calculated a composite fitness measure, λ. Statistical analyses showed no significant effects of age or size at metamorphosis on these same traits measured at maturity, or on the fitness components we estimated. The first individuals to mature had the highest total egg production and individual fitness; differences in body size at maturation explained none of the variation observed in fitness components. Our results show that metamorphosis was uncoupled from maturity and from fitness components by growth and development achieved during the juvenile phase of the life cycle, and support the conclusion that fitness consequences of metamorphosis depend fundamentally on the organization of an organism's life cycle. They also suggest that body size plays a different life-history role in these organisms than is recognized in most poikilotherms, and suggest the hypothesis, based on laboratory experiments, that selection may act primarily on juvenile developmental rates in field populations.  相似文献   

20.
The existence, nature, and physiological consequences of genetic variation for juvenile hormone esterase (JHE) activity was studied in the wing-polymorphic cricket, Gryllus firmus. Hemolymph (blood) JHE activity was sixfold lower in nascent short-winged (SW) females, relative to nascent long-winged (LW) females during the last juvenile stadium (stage). Morph-associated genetic variation for JHE activity had two causes, variation in loci: (1) regulating whole-organism enzyme activity; and (2) controlling the degree to which JHE is secreted into the blood Reduced JHE activity in nascent SW-selected individuals was associated with reduced in vivo juvenile hormone catabolism. This suggests that variation in JHE activity during juvenile development may have important physiological consequences with respect to the regulation of blood levels of juvenile hormone and consequent specification of wing morph. This is the first definitive demonstration of genetic variation for hormonal metabolism in any insect and a genetic association between hormone metabolism and the subsequent expression of morphological variation (wing morph). However, we have not yet firmly established whether these associations represent causal relationships In contrast to the clear association between JHE activity and wing morph development, we observed no evidence indicating that variation in JHE activity plays any direct or indirect role in causing the dramatic differences in ovarian growth between adult wing morphs. Variation in JHE activity also does not appear to be important in coordinating the development of wing morph with the subsequent expression of reproductive differences between adult morphs. Finally genetic variation for the developmental profiles of JHE activity during juvenile and adult stages are remarkably similar in three Gryllus species. This suggests that genetic correlations between JHE activities during different periods of development, which underlie these activity profiles, have been conserved since the divergence of the three Gryllus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号