首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symbiosomes are specific intracellular membrane‐bound vacuoles containing microalgae in a mutualistic Cnidaria (host)–dinoflagellate (symbiont) association. The symbiosome membrane is originally derived from host plasma membranes during phagocytosis of the symbiont; however, its molecular components and functions are not clear. In order to investigate the protein components of the symbiosome membranes, homogenous symbiosomes were isolated from the sea anemone Aiptasia pulchella and their purities and membrane intactness examined by Western blot analysis for host contaminants and microscopic analysis using various fluorescent probes, respectively. Pure and intact symbiosomes were then subjected to biotinylation by a cell impermeant agent (Biotin‐XX sulfosuccinimidyl ester) to label membrane surface proteins. The biotinylated proteins, both Triton X‐100 soluble and insoluble fractions, were subjected to 2‐D SDS‐PAGE and identified by MS using an LC‐nano‐ESI‐MS/MS. A total of 17 proteins were identified. Based on their different subcellular origins and functional categories, it indicates that symbiosome membranes serve as the interface for interaction between host and symbiont by fulfilling several crucial cellular functions such as those of membrane receptors/cell recognition, cytoskeletal remodeling, ATP synthesis/proton homeostasis, transporters, stress responses/chaperones, and anti‐apoptosis. The results of proteomic analysis not only indicate the molecular identity of the symbiosome membrane, but also provide insight into the possible role of symbiosome membranes during the endosymbiotic association.  相似文献   

2.
Metabolic interactions between algal symbionts and invertebrate hosts   总被引:2,自引:0,他引:2  
Some invertebrates have enlisted autotrophic unicellular algae to provide a competitive metabolic advantage in nutritionally demanding habitats. These symbioses exist primarily but not exclusively in shallow tropical oceanic waters where clear water and low nutrient levels provide maximal advantage to the association. Mostly, the endosymbiotic algae are localized in host cells surrounded by a host-derived membrane (symbiosome). This anatomy has required adaptation of the host biochemistry to allow transport of the normally excreted inorganic nutrients (CO2, NH3 and PO43−) to the alga. In return, the symbiont supplies photosynthetic products to the host to meet its energy demands. Most attention has focused on the metabolism of CO2 and nitrogen sources. Carbon-concentrating mechanisms are a feature of all algae, but the products exported to the host following photosynthetic CO2 fixation vary. Identification of the stimulus for release of algal photosynthate in hospite remains elusive. Nitrogen assimilation within the symbiosis is an essential element in the host's control over the alga. Recent studies have concentrated on cnidarians because of the impact of global climate change resulting in coral bleaching. The loss of the algal symbiont and its metabolic contribution to the host has the potential to result in the transition from a coral-dominated to an algal-dominated ecosystem.  相似文献   

3.
4.
ABSTRACT. In the Amoeba-bacteria symbiosis, rod-shaped Gram-negative bacterial endosymbionts reside within symbiosomes in the host cytoplasm, and the host and symbionts are mutually dependent for survival. Three proteins and one group of lipopolysaccharides (LPS) synthesized by the bacterial endosymbionts and two proteins derived from the host cells have been found to be involved in the host-symbiont interactions, although their respective roles are not yet fully known. The symbiont-derived molecules included proteins with molecular weights of 29 kDa, 67 kDa and 96 kDa and LPS. The 29-kDa protein was most abundant in the host cytoplasm, while the 96-kDa protein and LPS were found mostly on the symbiosome membranes. The 67-kDa protein was a GroEL analog and stayed within the symbionts. The host-derived 43-kDa protein, actin, was selectively accumulated by the symbionts, while the 220/225-kDa protein, spectrin, was attached to the symbiosome membranes. The symbiont genes coding for the 29-kDa and 67-kDa proteins were cloned and sequenced. The 29-kDa protein gene was unique with no relation to any known DNA sequences but has a leucine zipper-like motif, suggesting a possible DNA-binding function. The DNA sequence of the 67-kDa protein gene showed a 70% identity with heat-shock-protein genes of Escherichia coli and Coxiella burnetii.  相似文献   

5.
The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host–symbiont recognition processes and metabolic exchange between the 2 partners. The molecular communication is crucial for homeostatic regulation of the symbiosis, both under normal conditions and during stresses that further lead to symbiosis collapse. It is therefore important to identify and fully characterise the key players of this intimate interaction at the symbiotic interface. In this study, we determined the cellular and subcellular localization and expression of the sterol‐trafficking Niemann–Pick type C proteins (NPC1 and NPC2) in the symbiotic sea anemones Anemonia viridis and Aiptasia sp. We first established that NPC1 is localised within vesicles in host tissues and to the symbiosome membranes in several anthozoan species. We demonstrated that the canonical NPC2‐a protein is mainly expressed in the epidermis, whereas the NPC2‐d protein is closely associated with symbiosome membranes. Furthermore, we showed that the expression of the NPC2‐d protein is correlated with symbiont presence in healthy symbiotic specimens. As npc2‐d is a cnidarian‐specific duplicated gene, we hypothesised that it probably arose from a subfunctionalisation process that might result in a gain of function and symbiosis adaptation in anthozoans. Niemann–Pick type C proteins may be key players in a functional symbiosis and be useful tools to study host–symbiont interactions in the anthozoan–dinoflagellate association.  相似文献   

6.
All nitrogen-fixing bacteroids within legume root nodule cellsare surrounded by a host-derived peribacteroid membrane. Componentsof this membrane are supplied directly by the ER and Golgi ofthe host cell. The peribacteroid space lies between the peribacteroidand bacteroid membranes and contains several activities typicallyfound in vacuoles, namely; protease, acid trehalase, alpha-mannosidaseisoenzyme II and protein protease inhibitor. Thus bacteroidsinhabit an environment which fulfils the definition of a lysosome.Since the endosymbiotic organelles are morphologically differentfrom the lytic compartment normally present in a root cortexcell (the central vacuole), it is proposed that they representorgan-specific modifications of lysosomes, analogous to theprotein bodies of seeds. Perisymbiontic membranes are features common to all known plantendosymbioses (involving rhizobia, cyanobacteria, actinomycetes,vesicular-arbuscular mycorrhiza etc.) and the implications ofthis lead to the hypothesis that in all these cases the endosymbiontis compartmentalized within a specialized host lysosome. Key words: Actinomycetes, cyanobacteria, fixed nitrogen, peri-bacteroid/symbiont membrane/space, protein bodies, vesiculararbuscular mycorrhiza  相似文献   

7.
Two Bradyrhizobium japonicum, Tn5-induced, mutant strains, ML126 and ML150, were studied. Both induce host cell division to form normal-sized nodules that do not fix nitrogen and whose cells have very few bacteroids (Bar-). Early-infection (15 days post infection) cells have much endoplasmic reticulum (ER), numerous Golgi bodies, and large vacuoles that are probably secondary lysosomes. Later the cytoplasm of the host cells of both are dominated by hundreds of vesicles containing only finely fibrous material and that appear to originate by the degradation of the cell walls of the infection threads; they have been named "infection-thread wall degradation vesicles" (IWDV). Phosphotungstic acid-chromic acid (PACA) staining of thin sections shows that IWDV membranes and the plasma membranes of both the cells and infection threads usually stain quite intensely, while the membranes of other cell organelles do not. The membranes of the few symbiosomes present in the mutants also stain with PACA. This evidence suggests that largely the host-cell plasma membrane gives rise to both the vesicle and symbiosome membranes in these mutants. In cells induced by both mutants, ER appears to be deficient, a finding suggesting that an ER-synthesis signal is involved in the normal release process, that ER synthesis is prerequisite to a normal volume of release, and that insufficient ER can impair symbiosome formation. In the mutant-induced infections, normal lysosomes develop and engulf both symbiosomes and cytoplasmic vesicles, but the retardation of this activity is the probable cause of the cytoplasm becoming overloaded with vesicles.  相似文献   

8.
Addition of ATP to intact symbiosomes isolated from soybean nodules, resulted in generation of a membrane potential (positive inside) across the peribacteroid membrane (PBM). This energisation was monitored as oxonol fluorescence quenching. The rate of fluorescence quenching was inhibited by the inclusion of permeant anions in the reaction medium. Using this inhibition as a measure of anion uptake across the PBM, the presence of a phthalonate-sensitive dicarboxylate carrier on the PBM was confirmed. Following dissipation of the membrane potential by a permeant anion, a pH gradient, measured using [14C]methylamine uptake, was slowly established across the PBM. This pH was abolished by addition of an uncoupler but was insensitive to inhibitors of bacteroid respiration. The difference in pH between the external medium and the symbiosome interior was estimated to be in the range of 1–1.6 pH units. The magnitude in planta will depend on the concentrations of ATP and permeant anions in the cytosol of the host cell.Abbreviations PBM peribacteroid membrane - electrical membrane potential - MA methylamine The term symbiosome refers to the peribacteroid unit consisting of bacteroids enclosed in the host-derived peribacteroid membrane  相似文献   

9.
10.
Symbiodinium reside intracellularly in a complex symbiosome (host and symbiont‐derived) within cnidarian hosts in a specific host‐symbiont association. Symbiodinium is a diverse genus with variation greater than other dinoflagellate orders. In this paper, our investigation into specificity examines antigenic variation in the algal mucilage secretions at the host‐symbiont interface. Cultured Symbiodinium from a variety of clades were labeled with one of two antibodies to symbiont mucilage (PC3, developed using a clade B alga cultured from Aiptasia pallida; BF10, developed using a clade F alga cultured from Briareum sp.). The labeling was visualized with a fluorescent marker and examined with epifluorescence and confocal microscopy. PC3 antigen was found in cultured Symbiodinium from clades A and B, but not clades C, D, E and F. The correlation between labeling and clade may account for some of the specificity between host and symbiont in the field. Within clades A and B there was variation in the amount of label present. BF10 antigen was more specific and only found in cultures of the same cp23S‐rDNA strain the antibody was created against. These results indicate that the mucilage secretions do vary both qualitatively and quantitatively amongst Symbiodinium strains. Since the mucilage forms the host‐symbiont interface, variation in its molecular composition is likely to be the source of any signals involved in recognition and specificity.  相似文献   

11.
Ocean warming and other anthropogenic stresses threaten the symbiosis between tropical reef cnidarians and their dinoflagellate endosymbionts (Symbiodinium). Offspring of many cnidarians acquire their algal symbionts from the environment, and such flexibility could allow corals to respond to environmental changes between generations. To investigate the effect of both habitat and host genotype on symbiont acquisition, we transplanted aposymbiotic offspring of the common Caribbean octocoral Briareum asbestinum to (1) an environmentally different habitat that lacked B. asbestinum and (2) an environmentally similar habitat where local adults harbored Symbiodinium phylotypes that differed from parental colonies. Symbiont acquisition and establishment of symbioses over time was followed using a within-clade DNA marker (23S chloroplast rDNA) and a within-phylotype marker (unique alleles at a single microsatellite locus). Early in the symbiosis, B. asbestinum juveniles harbored multiple symbiont phylotypes, regardless of source (parent or site). However, with time (~4 yr), offspring established symbioses with the symbiont phylotype dominant in the parental colonies, regardless of transplant location. Within-phylotype analyses of the symbionts revealed a similar pattern, with offspring acquiring the allelic variant common in symbionts in the parental population regardless of the environment in which the offspring was reared. These data suggest that in this host species, host–symbiont specificity is a genetically determined trait. If this level of specificity is widespread among other symbiotic cnidarians, many cnidarian–algal symbioses may not be able to respond to rapid, climate change-associated environmental changes by means of between-generation switching of symbionts.  相似文献   

12.
Deep-sea Bathymodiolus mussels, depending on species and location, have the capacity to host sulfur-oxidizing (thiotrophic) and methanotrophic eubacteria in gill bacteriocytes, although little is known about the mussels' mode of symbiont acquisition. Previous studies of Bathymodiolus host and symbiont relationships have been based on collections of nonoverlapping species across wide-ranging geographic settings, creating an apparent model for vertical transmission. We present genetic and cytological evidence for the environmental acquisition of thiotrophic endosymbionts by vent mussels from the Mid-Atlantic Ridge. Open pit structures in cell membranes of the gill surface revealed likely sites for endocytosis of free-living bacteria. A population genetic analysis of the thiotrophic symbionts exploited a hybrid zone where two Bathymodiolus species intergrade. Northern Bathymodiolus azoricus and southern Bathymodiolus puteoserpentis possess species-specific DNA sequences that identify both their symbiont strains (internal transcribed spacer regions) and their mitochondria (ND4). However, the northern and southern symbiont-mitochondrial pairs were decoupled in the hybrid zone. Such decoupling of symbiont-mitochondrial pairs would not occur if the two elements were transmitted strictly vertically through the germ line. Taken together, these findings are consistent with an environmental source of thiotrophic symbionts in Bathymodiolus mussels, although an environmentally "leaky" system of vertical transmission could not be excluded.  相似文献   

13.
In many cnidarians, symbiotic algae live within host-derived symbiosomes. We determined whether a symbiosome membrane alters the response of isolated symbiotic algae to two signalling compounds that regulate algal carbon metabolism. Host release factor (HRF), which stimulates photosynthate release, and photosynthesis inhibiting factor (PIF), which inhibits photosynthetic carbon fixation, are found in homogenised tissue of the scleractinian coral Plesiastrea versipora. Compared with seawater controls, photosynthate release from isolated algae incubated in P. versipora homogenate for 2 h in the light was: 6 to 19-fold higher from its own algae (free of symbiosomes); 19 to 32-fold higher from Zoanthid robustus algae (within symbiosomes) and 3 to 24-fold higher from Z. robustus algae (free of symbiosomes); and from cultured algae (free of symbiosomes) was seven-fold higher from Montipora verrucosa and four-fold higher from Cassiopeia xamachana. Incubation of algae in P. versipora homogenate inhibited photosynthesis by: 33-49% in P. versipora algae; 29-47% in Z. robustus algae (regardless of whether or not the symbiosome was present); and 25% in M. verrucosa algae. In C. xamachana algae, photosynthesis increased. We conclude that the symbiosome is not essential for, yet does not block, the effects of HRF and PIF.  相似文献   

14.
Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.  相似文献   

15.
Catalano CM  Czymmek KJ  Gann JG  Sherrier DJ 《Planta》2007,225(3):541-550
Symbiotic association of legume plants with rhizobia bacteria culminates in organogenesis of nitrogen-fixing root nodules. In indeterminate nodules, plant cells accommodate rhizobial infection by enclosing each bacterium in a membrane-bound, organelle-like compartment called the symbiosome. Numerous symbiosomes occupy each nodule cell; therefore an enormous amount of membrane material must be delivered to the symbiosome membrane for its development and maintenance. Protein delivery to the symbiosome is thought to rely on the plant secretory system; however, the targeting mechanisms are not well understood. In this study, we report the first in-depth analysis of a syntaxin localized on symbiosome membranes. Syntaxins help define a biochemical identity to each compartment in the plant secretory system and facilitate vesicle docking and fusion. Here, we present biochemical and cytological evidence that the SNARE MtSYP132, a Medicago truncatula homologue of Arabidopsis thaliana Syntaxin of Plants 132, localizes to the symbiosome membrane. Using a specific anti-MtSYP132 peptide antibody, we also show that MtSYP132 localizes to the plasma membrane surrounding infection threads and is most abundant on the infection droplet membrane. These results indicate that MtSYP132 may function in infection thread development or growth and the early stages of symbiosome formation. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

16.
A novel hypothesis for the origin of eukaryotic cells is presented. It is assumed that the universal ancestor was bounded by two membranes of heterochiral lipid composition. We propose that the prokaryotic cells (the hypothetical host entity for alpha proteic-bacteria), though sharing a common ancestor with Archaea, was bounded by two membranes. The hypothesis suggests that an alpha proteic-bacterial symbiont was enclosed in the prokaryotic cells intermembrane space. In this view, the eukaryotic nuclear membrane and endomembrane system arose from the prokaryotic cells inner membrane while the eukaryotic plasma membrane arose from the prokaryotic cells outer membrane. The outlined scenario agrees with the view that engulfment of an alpha-proteic-bacterial cell by a host entity and its transformation to a mitochondrion was the driving force leading to the appearance of the first eukaryotic cell. The hypothesis seems to be consistent with the pre-cell theory, theory of membrane heredity, and the phagocytosis-late scenario.  相似文献   

17.
The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the alpha subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation.  相似文献   

18.
Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.  相似文献   

19.
The N2-fixing Azolla-Anabaena symbiotic association is characterized in regard to individual host and symbiont contributions to its total chlorophyll, protein, and levels of ammonia-assimilating enzymes. The phycocyanin content of the association and the isolated blue-green algal symbiont was used as a standard for this characterization. Phycocyanin was measured by absorption and fluorescence emission spectroscopy. The phycocyanin content and total phycobilin complement of the symbiotic algae were distinct from those of Anabaena cylindrica and a free-living isolate of the Azolla endophyte. The algal symbiont accounted for less than 20% of the association's chlorophyll and protein. Acetylene reduction rates in the association (based solely on the amount of algal chlorophyll) were 30 to 50% higher than those attained when the symbiont was isolated directly from the fern. More than 75% of the association's glutamate dehydrogenase and glutamine synthetase activities are contributed by the host plant. The specific activity of glutamate dehydrogenase is greater than that of glutamine synthetase in the association and individual partners. Both the host and symbiont have glutamate synthase activity. The net distribution of these enzymes is discussed in regard to the probable roles of the host and symbiont in the assimilation of ammonia resulting from N2 fixation by the symbiont.  相似文献   

20.
Many freshwater protists harbor unicellular green algae within their cells and these host‐symbiont relationships slowly are becoming better understood. Recently, we reported that several ciliate species shared a single species of symbiotic algae. Nonetheless, the algae from different host ciliates were each distinguishable by their different genotypes, and these host‐algal genotype combinations remained unchanged throughout a 15‐month period of sampling from natural populations. The same algal species had been reported as the shared symbiont of several ciliates from a remote lake. Consequently, this alga appears to play a key role in ciliate‐algae symbioses. In the present study, we successfully isolated the algae from ciliate cells and established unialgal cultures. This species is herein named Brandtia ciliaticola gen. et sp. nov. and has typical ‘Chlorella‐like’ morphology, being a spherical autosporic coccoid with a single chloroplast containing a pyrenoid. The alga belongs to the Chlorella‐clade in Chlorellaceae (Trebouxiophyceae), but it is not strongly connected to any of the other genera in this group. In addition to this phylogenetic distinctiveness, a unique compensatory base change in the SSU rRNA gene is decisive in distinguishing this genus. Sequences of SSU‐ITS (internal transcribed spacer) rDNA for each isolate were compared to those obtained previously from the same host ciliate. Consistent algal genotypes were recovered from each host, which strongly suggests that B. ciliaticola has established a persistent symbiosis in each ciliate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号