首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Cryopreservation of equine embryos with conventional slow-cooling procedures has proven challenging. An alternative approach is vitrification, which can minimize chilling injuries by increasing the rates of cooling and warming. The open pulled straw (OPS) and cryoloop have been used for very rapid cooling and warming rates. The objective of this experiment was to compare efficacy of vitrification of embryos in OPS and the cryoloop to conventional slow cool procedures using 0.25 mL straws. Grade 1 or 2 morulae and early blastocysts (< or = 300 microm in diameter) were recovered from mares on Day 6 or 7 post ovulation. Twenty-seven embryos were assigned to three cryopreservation treatments: (1) conventional slow cooling (0.5 degrees C/min) with 1.8 M ethylene glycol (EG) and 0.1 M sucrose, (4) vitrification in OPS in 16.5% EG, 16.5% DMSO and 0.5 M sucrose, or (3) vitrification with a cryoloop in 17.5% EG, 17.5% DMSO, 1 M sucrose and 0.25 microM ficoll. Embryos were evaluated for size and morphological quality (Grade 1 to 4) before freezing, after thawing, and after culture for 20 h. In addition, propidium iodide (PI) and Hoechst 33342 staining were used to assess percent live cells after culture. There were no differences (P > 0.1) in morphological grade or percent live cells among methods. Mean grades for embryos after culture were 2.9 +/- 0.2, 3.1 +/- 0.1, and 3.3 +/- 0.2 for conventional slow cooling, OPS and cryoloop methods, respectively. Embryo grade and percent live cells were correlated, r = 0.66 (P < 0.004). Thus OPS and the cryoloop were similarly effective to conventional slow-cooling procedures for cryopreserving small equine embryos.  相似文献   

2.
In Study 1 over 2000 4- to 8-cell mouse embryos were randomly pooled and assigned to 1 of 12 treatment groups. A 2 X 2 X 3 factorial design was used to analyze two types of cryoprotectant/post-thaw (PT) dilutions (dimethyl sulfoxide [Me2SO]/stepwise dilution versus glycerol/sucrose dilution), two storage containers (glass ampoules versus plastic straws), and three cooling treatments. Two commercial, controlled-rate freezing machines were examined, employing either nitrogen gas (Planer) or thermoelectric (Glacier) cooling. Embryos were cooled slowly (0.5 degrees C/min) to -35 or -80 degrees C and then cooled rapidly by transfer into liquid nitrogen (LN2). Thawed embryos were cultured for 24 hr after which developmental stage, post-thaw survival (PTS), embryo degeneration rate (EDR), quality grade (QG), and fluorescein diacetate viability grade (VG) were assessed. Overall, PTS and EDR were similar (P greater than 0.05) among the three freezing unit/plunge temperature treatments. Cumulative results of container and cryoprotectant/PT dilution treatments consistently demonstrated greater PTS, QG, and VG ratings and lower EDR values when embryos were frozen in ampoules using glycerol/sucrose dilution. Embryos treated with Me2SO/stepwise dilution were particularly sensitive to freezing damage when stored in plastic straws and plunged into LN2 at -35 degrees C. Study 2 was directed at determining whether Study 1 methods for diluting Me2SO-protected embryos markedly affected PTS rates. Post-thaw culture percentages were no different (P greater than 0.05) for four- to eight-cell Me2SO-treated embryos frozen in ampoules (using the forced-LN2 device), thawed, and diluted either conventionally in reduced concentrations of Me2SO or in the sucrose treatment normally accorded glycerolated embryos.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Eight-cell mouse embryos were frozen in 0.5-ml plastic straws in modified Dulbecco's phosphate buffered saline (PBS) plus 5% steer serum plus either 1.32 M dimethyl sulfoxide (DMSO) or 1.32 M glycerol. Upon thawing, embryos were diluted 1:4 with 0.0, 0.2, 0.6, or 1.0 M sucrose solutions within the straws. Thawing was either in air at ambient temperature or in 8 degrees C or 38 degrees C water. After 48 h of culture, more embryos frozen in DMSO and thawed in 8 degrees C and 37 degrees C water developed to blastocysts (87 and 93%, respectively) than embryos thawed in air (75%; P < 0.05). No significant differences in development were noted among the three thawing regimens when embryos were frozen with glycerol. There was no significant effect of concentration of sucrose during dilution on development of embryos postthaw. With glycerol as the cryoprotectant, damage to zonae pellucidae increased as thawing rates increased, whereas the opposite was observed with DMSO as the cryoprotectant (P < 0.05).  相似文献   

4.
Vitrification using open pulled straw (OPS) has provided encouraging results with embryos from other species. The aim of this study was to compare the survival of 6.5- and 6.75-day-old equine embryos after OPS vitrification and slow-cooling. Eighteen embryos were frozen using a slow-cooling method. Embryos were placed in modified PBS with increasing glycerol concentration (2.5%, 5%, 7.5% and 10% (v/v) 5 min each). Embryos were loaded into 0.25 ml straws then placed in a programmable freezer and subsequently plunged into liquid nitrogen. After thawing, cryoprotectant was removed by five steps with decreasing glycerol and sucrose concentrations. Twenty embryos were vitrified using the OPS method. Embryos were exposed to 7.5% dimethyl-sulfoxide (DMSO)+7.5% ethylene glycol (EG) for 3 min and in 18% DMSO+18% EG+0.4M sucrose for 1 min, loaded in OPS and plunged into liquid nitrogen. After warming, embryos were placed in decreasing sucrose concentrations. All embryos were cultured in synthetic oviduct fluid (SOF) medium for 3h and evaluated using 4',6-diamidino-2-phenylindole (DAPI) staining. The percentage of cells entering in S-phase (%SC) was evaluated by incorporation of BrdU. No significant differences were observed for mean diameter, morphological grade and percentage of degenerate embryos after 3h of culture for slow-cooling and OPS methods. The percentage of dead cells per embryo was similar for the two procedures (42+/-6 versus 46+/-9). The percentage of cells entering in S-phase did not differ significantly between the two procedures (27+/-5 versus 26+/-6). OPS vitrification may be as efficient as slow-cooling for the cryopreservation of equine embryos. However, these results should be confirmed by the transfer of OPS vitrified embryos to recipient mares.  相似文献   

5.
The effect of rapid freezing and thawing on the survival of 2-cell rabbit embryos was examined. When embryos in 2.2 M-propanediol were directly plunged from room temperature to liquid nitrogen some of them survived after thawing (8%) but only if they had been pretreated by exposure to an impermeable solute, sucrose, that makes the blastomeres shrink osmotically before cooling. High survival (77-88%) in vitro was obtained when pretreated embryos were first held at -30 degrees C for 30-240 min before immersion into liquid nitrogen. Transfer of such frozen-thawed embryos gave a survival rate to live young similar to that obtained with controls (26% and 32% respectively). DMSO was less effective than propanediol; only 2 out of 38 sucrose-pretreated frozen-thawed embryos developed in vitro. The present work shows that a combination of partial dehydration of blastomeres at room temperature with their permeation by a cryoprotective agent offers a simple method for successful rapid freezing and thawing of rabbit embryos.  相似文献   

6.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

7.
The genotypic response of mouse embryos to multiple freezing variables   总被引:3,自引:0,他引:3  
Four- and eight-cell embryos from 3 mouse genotypes were cryopreserved to study the relationship of genetics and freezing variables on post-thaw survival. Embryos from outbred N:NIH(S), N:NIH(S)-B and inbred (C57BL/6N) mice were exposed to 1 of 2 cryoprotectants (glycerol [GLYC] versus dimethyl sulfoxide [DMSO]) and stored in 1 of 2 containers (ampules [AMP] versus straws [STR]). Containerized embryos were cooled at a rate of 0.5 degrees C/min to a minimum of -35 degrees C, transferred into liquid nitrogen, and later thawed and cultured in vitro. Genotypic differences (p less than 0.05) were noted for 4 interrelated embryo characteristics including post-thaw survival (PTS), embryo degeneration rate (EDR), and quality grade (QG) and viability grade (VG) ratings. The PTS for outbred embryos was greater (p less than 0.05) in GLYC than DMSO, whereas inbred C57BL/6N embryos survived similarly (p greater than 0.05) in either cryoprotectant. Compared to DMSO counterparts, embryos from GLYC-treated outbred groups had improved QG and VG ratings and reduced EDR (p less than 0.05), but comparable results were observed between GLYC- AND DMSO-treated embryos in the C57BL/6N group. Between genotypes, type of container affected PTS and EDR (p less than 0.05) but not QG or VG ratings (p greater than 0.05). Within genotypes, PTS generally ranged 15 to 20% higher (p less than 0.01) in AMP than STR groups. Increased PTS was noted in outbred mouse x GLYC x AMP groups; however, based on the degrees of difference, the inbred C57BL/6N strain appeared less affected by this 3-way interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Early equine blastocysts and blastocysts were collected nonsurgically at six days post-ovulation. Thirty-two embryos were randomly assigned to a 2x2 factorial design. Factors were: 1) 0.5-ml straws or 1-ml glass ampules; and 2) plunging into liquid nitrogen (IN(2)) at -33 C or -38 C. Cryoprotectant, 10% glycerol in PBS plus 5% fetal calf serum (FCS) was added in two steps, 5% then 10%. Embryos were cooled at 4 C/min to -6 C and then seeded, 0.3 C/min to -30 or -35 C and 0.1 C/min to -33 or -38 C. Samples were thawed in 37 C water and glycerol removed in six steps, 10 min per step. Embryo quality and stage of development were evaluated prior to freezing, immediately post-thaw and after 24 h culture in Ham's F10 with 5% FCS. The mean post-thaw quality of embryos plunged at -33 C was superior (P<0.05) to that of embryos plunged at -38 C (2.0 vs 2.9). Embryos frozen in ampules and plunged at -38 C were of poorer quality (P<0.05) than those frozen in ampules and plunged at -33 C or frozen in straws and plunged at -33 C. After 24 h of culture, more embryos developed if frozen in straws compared to ampules, and plunging at -33 C resulted in higher quality embryos than plunging at -38 C. In Experiment 2, 23 embryos were packaged in straws and plunged at -33 C as described in Experiment 1. Six of the 23 surgically transferred frozen embryos were degenerate at thawing and the remaining 17 surgically transferred were via flank incision. Pregnancy rate at 50 days post-ovulation was 53% (nine of 17). Early blastocysts resulted in a higher (P<0.05) pregnancy rate (8 10 , 80%) than expanded blastocysts (1 7 , 14%).  相似文献   

9.
Status of cryopreservation of embryos from domestic animals.   总被引:6,自引:0,他引:6  
The discovery of glycerol as an effective cryoprotectant for spermatozoa led to research on cryopreservation of embryos. The first successful offspring from frozen-thawed embryos were reported in the mouse and later in other laboratory animals. Subsequently, these techniques were applied to domestic animals. Research in cryopreservation techniques have included studies concerning the type and concentration of cryoprotectant, cooling and freezing rates, seeding and plunging temperatures, thawing temperatures and rates, and methods of cryoprotectant removal. To date, successful results based on pregnancy rates have been obtained with cryopreserved cow, sheep, goat, and horse embryos but no success has been reported in swine. Post-thaw embryo survival has been shown to be dependent on the initial embryo quality, developmental stage, and species. The freezing techniques most frequently used in research and by commercial companies are identified as "equilibrium" cryopreservation. In this technique the embryos are placed in a concentrated glycerol solution (1.4 M in PBS supplemented with BSA) at room temperature and the glycerol is allowed to equilibrate for a 20-min period. During the cooling process the straws are seeded (-4 to -7 degrees C) and cooling is continued at a rate of 0.3 to 0.5 degree C/min to -30 degrees C when bovine embryos may be plunged into LN2. Sheep embryos are successfully frozen with ethylene glycol (1.5 M) or DMSO (1.5 M) rather than with glycerol. Horse embryos have been frozen in 0.5 rather than 0.25 cc straws but with cooling rates and seeding and plunging temperatures similar to those used with bovine embryos. Swine embryos have shown a high sensitivity to temperature and cryoprotectants probably due to their high lipid content and a temperature decrease to 15 or 10 degrees C causes a dramatic increase in the percentage of degenerated embryos. However, a recent study has shown that hatched pig blastocysts survived exposure below 15 degrees C. Recent research has shown that embryos may also be frozen by a "nonequilibrium" method. This rapid freezing by vitrification consists of dehydration of the embryo at room temperature by a very highly concentrated vitrification media (3.5 to 4.0 M) and a very rapid freeze that avoids the formation of ice allowing the solution to change from a liquid to a glassy state. Vitrification solutions consist of combinations of sucrose, glycerol, and propylene glycol. With this technique, 50% pregnancy rates have been reported with the bovine blastocyst.  相似文献   

10.
We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.  相似文献   

11.
Several concentrations of glycerol for cryoprotection and several concentrations of sucrose for cryoprotectant dilution were examined with frozen, thawed and cultured mouse embryos. Four hundred and eighty late morulae to early blastocyst stage embryos were collected from 35 superovulated mice (B6D2 x Swiss Webster crosses back-crossed to Swiss Webster males) 3-1/2 days after breeding. The embryos were transferred through increasing concentrations of glycerol in modified Dulbecco(1)s phosphate buffered saline (MDPBS) to reach three final concentrations of 1.0 M, 1.4 M and 1.8 M. The embryos were loaded in 0.5-ml French straws appropriately filled with the cryoprotectant and sucrose solutions for each treatment. The straws were cooled with a standard fast-freezing program to -35 degrees C, then plunged into liquid nitrogen. After 58 days of storage at -196 degrees C the straws were thawed in a 37 degrees C water bath. Cryoprotectant dilution was accomplished with a standard step-wise procedure or in the straw with one of three concentrations of sucrose solution (0.25 M, 0.5 M, 1.0 M) in MDPBS. The embryos were then washed twice in MDPBS, twice in Whitten's media for embryo culture and then placed in microdrops of Whitten's media under paraffin oil in a water saturated 5% CO(2) in air atmosphere at 37 degrees C. Embryos were observed 24 hours later for development to the expanded blastocyst stage. The proportion of embryos developing in vitro from the three glycerol concentrations were not significantly different with standard step-wise dilution procedures for glycerol removal. After step-wise cryoprotectant removal, blastocyst expansion occurred in 49%, 44% and 52% of embryos frozen in 1.0 M, 1.4 M and 1.8 M glycerol, respectively. The 1.0 M sucrose dilution of 1.0 M glycerol showed the highest development (60.5%) in vitro but was not significantly different from any of these three step-wise diluted glycerol concentrations. The step-wise dilution of the three glycerol concentrations and dilution of the 1.0 M glycerol and 1.0 M sucrose were all superior (P < 0.01) to any other dilution procedure examined.  相似文献   

12.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

13.
The toxic effects of sucrose and the conditions of in-straw glycerol removal after freezing and thawing were studied using Day-3 mouse embryos. At 20 degrees C, exposure to less than or equal to 1.0 M-sucrose for periods up to 30 min had no adverse effects on freshly collected embryos. At 25 and 36 degrees C, however, greater than or equal to 1.0 M-sucrose significantly reduced the developmental potential (P less than 0.001). In the freezing experiments the embryos were placed in 0.5 ml straws containing 40 microliters freezing medium separated by an air bubble from 440 microliters sucrose solution. The straws were frozen rapidly in the vapour about 1 cm above the surface of liquid nitrogen. The post-thaw viability was substantially better after sucrose dilution at 20 degrees C than at 36 degrees C. Mixing the freezing medium with the sucrose diluent immediately after thawing further improved the rate of survival relative to mixing just before freezing (P less than 0.001). The best survival was obtained when the freezing medium contained 3.0 M-glycerol + 0.25 M-sucrose; it was mixed with the diluent after thawing and the glycerol was removed at 20 degrees C. Under such conditions the sucrose concentration in the diluent had no significant effect on the rate of development (0.5 M, 69%; 1.0 M, 73%; 1.5 M, 64%). The results show that during sucrose dilution the temperature should be strictly controlled and suggest that intracellular and extracellular concentrations of glycerol are important in the cryoprotection of embryos.  相似文献   

14.
Two studies were conducted to evaluate the influence of cryoprotectant, cooling rate, container and cryopreservation procedure on the post-thaw viability of sheep embryos. In Study 1, late morula- to blastocyst-stage embryos were exposed to 1 of 10 cryoprotectant (1.5 M, glycerol vs propylene glycol)-plunge temperature treatments. Embryos were placed in glass ampules and cooled at 1 degrees C/min to -5 degrees C, seeded and further cooled at 0.3 degrees C/min to -15, -20, -25, -30 and -35 degrees C before rapid cooling by direct placement in liquid nitrogen (LN(2)). Post-thaw embryo viability was improved (P<0.01) when embryos were cooled to at least -30 degrees C before LN(2) plunging. Although there were no overt differences in embryo viability between cryoprotectant treatments (each resulted in live offspring after embryo transfer), there was a lower (P<0.01) incidence of zona pellucida damage using propylene glycol (4%) compared to glycerol (40%). In Study 2, embryos were equilibrated in 1.5 M propylene glycol or glycerol or a vitrification solution (VS3a). Embryos treated in propylene glycol or glycerol were divided into ampule or one-step((R)) straw treatments, cooled to -6 degrees C at 1 degrees C/min, seeded, cooled at 0.5 degrees C/min to -35 degrees C, held for 15 minutes and then transferred to LN(2). Embryos vitrified in the highly concentrated VS3a (6.5 M glycerol + 6% bovine serum albumin) were transferred from room air to LN(2) vapor, and then stored in LN(2). Propylene glycol- and glycerol-treated embryos in straws experienced lower (P<0.05) degeneration rates (27%) and yielded more (P<0.05) hatched blastocysts (73 and 60%, respectively) at 48 hours of culture and more (P<0.05) trophoblastic outgrowths (67 and 53%, respectively) after 1 week than vitrified embryos (47, 40 and 20%, respectively). In vitro development rate for VS3a-treated embryos was similar (P>0.10) to that of ampule controls, which had fewer (P<0.05) expanded blastocysts compared to similar straw treatments. Live offspring were produced from embryos cryopreserved by each straw treatment (propylene glycol, 3 of 7; glycerol, 1 of 7; VS3a, 2 of 7). In summary, freeze-preservation of sheep embryos was more effective in one-step straws than glass ampules and propylene glycol tended to be the optimum cryoprotectant. Furthermore, these findings demonstrate, for the first time, the biological competence of sheep embryos cryopreserved using the simple and rapid procedure of vitrification.  相似文献   

15.
This study was conducted to examine the effect of a quick-freezing protocol on morphological survival and in vitro development of mouse embryos cryopreserved in ethylene glycol (EG) at different preimplantation stages. One-cell embryos were harvested from 6-to 8-wk-old CB6F1 superovulated mice, 20 to 23 h after pairing with males of the same strain and hCG injection. The embryos were cultured in human tubal fluid (HTF) containing 4 mg/ml BSA under mineral oil at 37 degrees C in 5% CO(2) plus 95% room air at maximal humidity. Twenty-four to 96 h after collection, the embryos were removed from culture and frozen at the 2 cell, 4 to 8-cell, compact morula, early blastocyst, expanding blastocyst and expanded blastocyst stages. To perform the quick-freeze procedure, embryos were equilibrated in Dulbecco's phosphate buffered saline (DPBS) + 10 % fetal bovine serum (FBS) + 0.25 M sucrose + 3 M ethylene glycol (freeze medium) for 20 min at room temperature (22 to 26 degrees C) and loaded in a single column of freeze medium into 0.25-ml straws (4 to 5 embryos per straw). The straws were held in liquid nitrogen vapor for 2 min and immersed in liquid nitrogen. Embryos were thawed by gentle agitation in a 37 degrees C water bath for 20 sec and transferred to DPBS + 10 % FBS + 0.5 M sucrose (re-hydration medium) for 10 min at room temperature, rinsed 2 times in HTF plus 4 mg/ml BSA and then cultured for 24 to 96 h. Survival of embryos was based on their general morphological appearance after thawing and their ability to continue development upon subsequent culture in vitro. Survival of blastocysts after thawing also required expansion or reexpansion of the blastocoel after several hours in culture. Significant differences were found in the survival and development of mouse embryos at different developmental stages quick-frozen in ethylene glycol and sucrose: 2-cell embryos 43/84 (51%), 4 to 8-cell embryos 44/94 (47%), morulae and early blastocysts 56/70 (80%; P相似文献   

16.
Random bred female albino mice (6-8 weeks old) were used as a source of embryos. 8- to 16 cell embryos were dehydrated in glycerol-sucrose mixture in 0.25 ml straws at room temperature. Straws were cooled at the rate of 5 degrees C/min to -7 degrees C. Seeding was induced by touching the out side of the straw at -7 degrees C. Straws were further cooled at 0.5 degree C/min down to -35 degrees C and then plunged into liquid N2. Thawing of straws was done by direct transfer into water at 35 degrees C. Frozen-thawed embryos were cultured in a CO2 incubator maintained at 39 degrees C. Out 190 embryos (8-16 cell) initially frozen, 169 (88.94%) were recovered on thawing. 158 (93.5%) out of 169 were apparently normal and used for culture. 75 (47.46%) developed to morulae/early blastocysts and 72 (45.56%) to expanded blastocysts on 24 and 48 hr culture respectively. In conclusion, the incorporation of sucrose in the freezing medium at a concentration of 0.25 M has led us to propose a freezing, thawing and transfer method without dilution of glycerol. The technique being quite simple is worth trying in farm animals where importance of this technique in non-surgical transfer of frozen-thawed embryos will be a boon.  相似文献   

17.
An integrated bovine embryo transfer program was conducted in collaboration with 11 Japanese prefectural livestock experiment stations. The program was conducted to evaluate the practicability of the direct transfer method for bovine embryos frozen-thawed in the presence of propylene glycol (PG) or ethylene glycol (EG) under on-farm conditions. Embryos at the compacted morula to expanded blastocyst stages were collected from superovulated donors on Day 7 or 8 after estrus and equilibrated in 1.6 M PG or 1.8 M EG in Dulbecco's phosphate-buffered saline (DPBS) supplemented with 20% heat-inactivated calf serum. Embryos were then loaded individually into a 0.25-ml straw and placed directly into a cooling chamber of a programmable freezer precooled to -7 degrees C. After 2 min, the straw was seeded, maintained at -7 degrees C for 8 min more, and then cooled to -30 degrees C either at 0.3 degree C/min or 0.5 degree C/min before being plunged into liquid nitrogen. Embryos at the same stages were also frozen in the presence of 1.4 M glycerol (GLY) by a conventional method, which served as a control. The frozen embryos were thawed by allowing the straws to stand in air for 5 to 10 sec and then immersing them in a 30 degrees C water bath. Embryos frozen-thawed in the presence of PG or EG were nonsurgically transferred into the uterine horn without diluting the cryoprotectant. Embryos frozen-thawed in the presence of GLY were nonsurgically transferred after removing GLY either by the stepwise method (GLY-I) or by in situ dilution with 0.3 M sucrose solution (GLY-II). A total of 1,273 (PG: 400, EG: 418, GLY-I: 177, GLY-II; 278) frozen-thawed embryos was transferred into recipients, yielding 545 pregnancies (overall: 42.8%, PG: 36.0%, EG; 44.7%, GLY-I; 48.6%, GLY-II; 46.0%). The pregnancy rate with PG was significantly lower than that with EG or GLY-II (P < 0.05). The pregnancy rate was affected by the type of cryoprotectant, the region where the embryo transfer program was carried out, the developmental stage of the embryos, the parity of the recipients, and corpus luteum (CL) quality of the recipients. There were no differences in rates of abortion and stillbirth among the 3 cryoprotectants. The present study demonstrates that EG can be effectively used as a cryoprotectant for freezing and direct transfer of bovine embryos, and that the direct transfer method is applicable under on-farm conditions.  相似文献   

18.
Several glycerol (GLY) dilution treatments were compared using frozen-thawed early blastocysts from Swiss Webster mice. These treatments consisted of 0.00 (0.00S n = 68), 0.25 (0.25S n = 67), 0.50 (0.50S n = 76), 0.75 (0.75S n = 66), 1.00 (1.00S n = 59), and 1.25 (1.25S n = 60) M of sucrose to remove GLY from embryos in one step. Then the one step procedure was compared with a three-step GLY dilution treatment (C n = 66). Embryos were exposed to 1.5 M of GLY in three-steps, frozen according to a standard freezing technique and stored at -196 degrees C. Embryos were thawed in a 37 degrees C water bath, pooled, and those graded good or excellent were randomly assigned to the experimental groups. The blastocysts were cultured in Whitten's medium microdrops under paraffin oil in a water saturated 5% CO(2) air atmosphere at 37 degrees C. The proportion (%) of embryos developing to expanded blastocysts was lowest (P < 0.05) in treatment 0.00S (63.1 +/- 4.0). The 0.25S (72.0 +/- 4.3) and 0.50S (75.0 +/- 3.1) 0.75S (79.0 +/- 4.4) treatments yielded a similar percentage of expanded blastocysts. The 1.00S treatment (87.0 +/- 4.0) was similar to 0.75S and 1.25S (98.3 +/- 4.0) treatments. The C treatment was superior (P < 0.05) to dilutions done with < 0.75 M sucrose, similar to 0.75S and 1.00S, and inferior (P < 0.05) to 1.25S. This later treatment yielded the highest percentage of expanded blastocysts. The percentage of embryos that hatched in treatments 0.00S, 0.25S, 0.50S, 0.75S and C was lower (P < 0.05) compared to 1.00S and 1.25S. The percentage of embryos and hatched blastocysts increased linearly (P < 0.01) from 0.0 to 1.25 M sucrose. Dilution of GLY with 1 or 1.25 M sucrose yielded better results compared with lower sucrose concentrations or the three-step GLY removal procedure.  相似文献   

19.
S Ogawa  S Tomoda 《Jikken dobutsu》1976,25(4):273-282
Preimplantation stage (16-celled and morula) rabbit embryos were successfully frozen to -196 degrees C. The cooling rate (from a room temperature to 0 degrees C), the presence of the mucin layer surrounding embryos, the ice-seeding treatment and the thawing procedure were examined to determine their effects on the survival of the frozen embryos of Japanese white, New Zealand white and Dutch-Belted rabbits. A high proportion (51%; 16-celled, 69%; morula) of Dutch-Belted rabbit embryos developed in vitro, when they were frozen to -196 degrees C, applying the ice-seeding at -4 degrees C in the presence of 12.5% DMSO, after being cooled to 0 degrees C at the rate of 7-9 degrees C/min, and were diluted by a stepwise addition of 4 different strength PBS on thawing. The highest rate of in vitro development (81%; Japanese white, 75%; New Zealand white, 82%; Dutch Belted embryos) was obtained when the morula stage embryos were frozen to -196 degrees C applying seeding at -4 degrees C after being cooled to 0 degrees C at the rate of 1 degrees C/2.5 min and were diluted, on thawing, by stepwise addition of 6, 3 and 1% DMSO solution and a culture medium. No great difference was found in the survival rate between the embryos covered with the mucin layer and those which had not the coat. All the embryos frozen without applying seeding treatment failed to develop in vitro after being thawed and diluted. Nine out of 27 does each of which received 6 reimplantations of the embryos frozen-thawed became pregnant and were found to be carrying 37 normal fetuses on the 12th day of pregnancy.  相似文献   

20.
Embryos (8-16 cell) were obtained from random bred albino mice (6-8 weeks old) that were induced to superovulate by injections of 5 I.U. PMSG and 5 I.U. hCG given 48 hr apart. Embryos were exposed to intracellular cryoprotecting medium (glycerol 10%, 1-2 propanediol 20% in PBS) for 10 min and then transferred to extracellular vitrification medium (25% glycerol, 25% 1-2 propanediol in PBS). Vitrification medium containing embryos, and diluent (1 M sucrose) were loaded in a straw and immediately plunged into liquid N2. After thawing at 20 degrees C, the contents of the straw were mixed by shaking (1 step dilution) and emptied in a petri dish. After 3 washings in culture medium the embryos were kept in CO2 incubator for further development. In 3-step dilution procedure the dilution of cryoprotectants was done in 0.5 and 0.25 M sucrose before culture. Embryos in 3-step dilution of cryoprotectants exhibited high survival as compared to 1-step dilution (20.23% vs 6.55%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号