首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu LZ  Li C  Chen Q  Jing Y  Carpenter R  Jiang Y  Kung HF  Lai L  Jiang BH 《PloS one》2011,6(4):e19139
MicroRNAs (miRNAs) are endogenous, small noncoding RNAs that play important roles in various cellular functions and tumor development. Recent studies have indicated that miR-21 is one of the important miRNAs associated with tumor growth and metastasis, but the role and molecular mechanism of miR-21 in regulating tumor angiogenesis remain to be elucidated. In this study, miR-21 was overexpressed by transfecting pre-miR-21 into human prostate cancer cells and tumor angiogenesis was assayed using chicken chorioallantoic membrane (CAM). We found that overexpression of miR-21 in DU145 cells increased the expression of HIF-1α and VEGF, and induced tumor angiogenesis. AKT and extracellular regulated kinases (ERK) 1/2 are activated by miR-21. Inhibition of miR-21 by the antigomir blocked this process. Overexpression of the miR-21 target, PTEN, also inhibited tumor angiogenesis by partially inactivating AKT and ERK and decreasing the expression of HIF-1 and VEGF. The AKT and ERK inhibitors, LY294002 and U0126, suppressed HIF-1α and VEGF expression and angiogenesis. Moreover, inhibition of HIF-1α expression alone abolished miR-21-inducing tumor angiogenesis, indicating that HIF-1α is required for miR-21-upregulated angiogenesis. Therefore, we demonstrate that miR-21 induces tumor angiogenesis through targeting PTEN, leading to activate AKT and ERK1/2 signaling pathways, and thereby enhancing HIF-1α and VEGF expression; HIF-1α is a key downstream target of miR-21 in regulating tumor angiogenesis.  相似文献   

2.
3.
4.
We have previously demonstrated that bcl-2 overexpression in tumor cells exposed to hypoxia increases the expression of vascular endothelial growth factor (VEGF) gene through the hypoxia-inducible factor-1 (HIF-1). In this article, we demonstrate that exposure of bcl-2 overexpressing melanoma cells to hypoxia induced phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2 proteins. On the contrary, no modulation of these pathways by bcl-2 was observed under normoxic conditions. When HIF-1alpha expression was reduced by RNA interference, AKT and ERK1/2 phosphorylation were still induced by bcl-2. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways reduced the induction of VEGF and HIF-1 in response to bcl-2 overexpression in hypoxia. No differences were observed between control and bcl-2-overexpressing cells in normoxia, in terms of VEGF protein secretion and in response to PI3K and MAPK inhibitors. We also demonstrated that RNA interference-mediated down-regulation of bcl-2 expression resulted in a decrease in the ERK1/2 phosphorylation and VEGF secretion only in bcl-2-overexpressing cell exposed to hypoxia but not in control cells. In conclusion, our results indicate, for the first time, that bcl-2 synergizes with hypoxia to promote expression of angiogenesis factors in melanoma cells through both PI3K- and MAPK-dependent pathways.  相似文献   

5.
Excessive generation of reactive oxygen species (ROS) in cancer cells is associated with cancer development, but the underlying mechanisms and therapeutic significance remain elusive. In this study, we reported that levels of ROS and p22phox expression are greatly increased in human prostate cancer tissues, and knockdown of p22phox by specific small interfering RNA (siRNA) decreased ROS levels in prostate cancer cells. We also showed that stable downregulation of p22phox in prostate cancer cells inhibited cell proliferation and colony formation, which was mediated by AKT and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and their downstream molecules hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). The NADPH oxidase subunit NOX1 was also elevated in prostate cancer cells, and was involved in activation of AKT/ERK/HIF-1/VEGF pathway and regulation of cell proliferation. Knockdown of p22phox resulted in inhibition of tumor angiogenesis and tumor growth in nude mice. These findings reveal a new function of p22phox in tumor angiogenesis and tumor growth, and suggest that p22phox is a potential novel target for prostate cancer treatment.  相似文献   

6.
Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.  相似文献   

7.
8.
9.
10.
Fang J  Ding M  Yang L  Liu LZ  Jiang BH 《Cellular signalling》2007,19(12):2487-2497
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1 and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.  相似文献   

11.
Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC) cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy.  相似文献   

12.
13.
14.
Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in the angiogenesis during the development of placenta, but the intracellular signaling mechanism by which TGF-beta1 stimulates this process remains poorly understood. In this article, we demonstrated that exposure of normal human cytotrophoblast cells to TGF-beta1 stimulated the secretion of the VEGF gene encoding vascular endothelial growth factor, which is a key factor in angiogenesis. Meanwhile, treatment of normal human cytotrophoblast cells with TGF-beta1-induced expression of HIF-1a, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. Our data indicated that TGF-beta1 induced extracellular signal- regulated kinase (ERK) 1/2 phosphorylation in normal human cytotrophoblast cells. Moreover, treating cells with PD98059, an inhibitor of ERK1/2 signaling, inhibited TGF-beta1 stimulation of VEGF secretion and HIF-1a protein expression. These data indicated that in normal human cytotrophoblast cells, TGF-beta1 induced HIF-1a-mediated VEGF secretion, and TGF-beta1-stimulated-ERK1/2 activation may be involved in this process.  相似文献   

15.
Recent studies demonstrate that PI3K activation and PTEN mutation are frequently found in many human cancer cells and tissues. However, the mechanism of PI3K signaling in human cancer tumorigenesis remains to be elucidated. In this study we specifically downregulated p110alpha expression in ovarian cancer cells using siRNA interference. We found that p110alpha downregulation greatly decreased ovarian tumor growth and angiogenesis, and that p110alpha siRNA inhibited VEGF expression through decreasing hypoxia-inducible factor 1alpha expression in both ovarian cancer cells and tumor tissues. To determine the downstream targets of PI3K in regulating tumor growth and angiogenesis, we find that AKT1 is a major downstream mediator for regulating tumor growth, angiogenesis, and VEGF expression. These data show that p110alpha and AKT1 play an important role in tumor growth by inducing angiogenesis and by increasing HIF-1alpha and VEGF expression. This work provides a better understanding of the molecular mechanism of human cancer induced by the activation of PI3K signaling.  相似文献   

16.
Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy.  相似文献   

17.
18.
Wang J  Wang J  Sun Y  Song W  Nor JE  Wang CY  Taichman RS 《Cellular signalling》2005,17(12):1578-1592
The establishment of metastatic bone lesions in prostate cancer (CaP) is a process partially dependent on angiogenesis. Previously we demonstrated that the stromal-derived factor-1 (SDF-1 or CXCL12)/CXCR4 chemokine axis is critical for CaP cell metastasis. In this investigation, cell lines were established in which CXCR4 expression was knocked down using siRNA technology. When CaP cells were co-transplanted with human vascular endothelial cells into SCID mice, significantly fewer human blood vessels were observed paralleling the reductions in CXCR4 levels. Likewise, the invasive behaviors of the CaP cells were inhibited in vitro. From these functional observations we explored angiogenic and signaling mechanisms generated following SDF-1 binding to CXCR4. Differential activation of the MEK/ERK and PI3K/AKT pathways that result in differential secretion IL-6, IL-8, TIMP-2 and VEGF were seen contingent on the cell type examined; VEGF and TIMP-2 expression in PC3 cells are dependent on AKT activation and ERK activation in LNCaP and LNCaP C4-2B cells leads to IL-6 or IL-8 secretion. At the same time, expression of angiostatin levels were inversely related to CXCR4 levels, and inhibited by SDF-1 stimulation. These data link the SDF-1/CXCR4 pathway to changes in angiogenic cytokines by different signaling mechanisms and, suggest that the delicate equilibrium between proangiogenic and antiangiogenic factors may be achieved by different signal transduction pathways to regulate the angiogenic phenotype of prostate cancers. Taken together, our results provide new information regarding expression of functional CXCR4 receptor-an essential role and potential mechanism of angiogenesis upon SDF-1 stimulation.  相似文献   

19.
20.
Oxidized lowdensity lipoprotein (OxLDL) can impact the formation of choroidal neovascularization (CNV) via regulating endothelial cell proliferation and secretion of inflammatory and angiogenic factors, but the specific molecular mechanism is not clear. In this study, we evaluated the role of molecular pathways that affect angiogenesis at different stages. In vivo, we found that intravitreal injection of OxLDL following the laser photocoagulation significantly enhanced the CNV size. In vitro experiment confirmed that OxLDL impacts the formation of CNV via regulating endothelial cell proliferation in Rhesus monkey choroid-retinal vascular endothelial cells (RF/6A) and secretion of inflammatory and angiogenic factors. OxLDL promotes angiogenesis through increasing VEGF and some other pro-angiogenic factors expression. Treatment with LY294002, a specific inhibitor of the PI3K pathway, could abrogate VEGF-increased angiogenesis. OxLDL induced the TGF-β2/Smad signaling axis to participate in the maintenance of neovascular formation. Treatment with PD98059, a specific inhibitor of the MEK pathway, could abrogate it. We also found that OxLDL increased the level of pro-angiogenic factors and promoted the endothelium-mesenchymal transition (EndMT) process, which is important for early tube formation and late maintaining of angiogenesis respectively. In summary, our results indicate that OxLDL affects CNV formation by increasing VEGF expression in the early stage, with activation of the MEK/ERK pathway. And OxLDL induces the TGF-β2/Smad signaling axis, which leads to EndMT, to affects the later stage of CNV formation by activating the PI3K/AKT pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号