首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer’s disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain’s response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (Aβ) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model Aβ toxicity, rats received intracerebralventricular (icv) injections of the toxic 25-35 fragment of the Aβ peptide (Aβ alone group). To model the combination of Aβ toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of Aβ₂₅₋₃₅ (combined Aβ/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without Aβ. By 21 d, GM2 levels only remained elevated in the combined Aβ/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined Aβ/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and Aβ/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke.  相似文献   

2.
Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli.  相似文献   

3.
Neuronal damage subsequent to transient cerebral ischemia is a multifactorial process involving several overlapping mechanisms. Gangliosides, sialic acid-conjugated glycosphingolipids, reduce the severity of acute brain damage in vitro. However their in vivo effects on the cerebral cortex damaged by ischemic infarct are unknown. To assess the possible protective role of gangliosides we examined their expression in the cerebral cortex damaged by ischemic infarct in the rat. Ischemia was induced by middle cerebral artery (MCA) occlusion, and the resulting damage was observed by staining with 2, 3, 5-triphenylterazolium chloride (TTC). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GM3 and GM1 increased in the damaged cerebral cortex, and immunofluorescence microscopy also revealed a significant change in expression of GM1. In addition, in situ hybridization demonstrated an increase in the mRNA for ganglioside GM3 synthase. These results suggest that gangliosides GM1 and GM3 may be synthesized in vivo to protect the cerebral cortex from ischemic damage.  相似文献   

4.
Ronald L. Schnaar 《FEBS letters》2010,584(9):1741-1747
Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-cell interactions, enhances long-term axon-myelin stability and inhibits axon outgrowth after injury. Knowledge of the molecular interactions of brain gangliosides may improve understanding of axon-myelin stability and provide opportunities to enhance recovery after nerve injury.  相似文献   

5.
Gangliosides in rat kidney were analyzed for their composition, regional distribution, and developmental changes. Renal tissue from 7-week-old rats showed a GM3-dominant pattern with GD3 and several minor ganglioside components including GM4, GM2, GD1a, and an unknown ganglioside (ganglioside X). The tissue also contained c-series gangliosides that included GT3 as the main component with GT2 in a lesser amount. Ganglioside analysis of cortical and medullary regions of renal tissue suggested the restricted localization of some gangliosides. While GM4 and GD3 were enriched in the cortical region, GM2 was distributed mainly in the medullary area. Renal gangliosides showed unique developmental profiles during a period from Embryonic Day 20 (E20) to 7 weeks postnatal. The content of renal gangliosides increased from E20, reached the highest around Postnatal Day 1, and thereafter, decreased rapidly to the adult level. The ratio of N-glycolylneuraminic acid to total sialic acids in gangliosides tended to change in inverse proportion to the amount of total sialic acids. The composition of major gangliosides in renal tissues shifted from GD3-dominant to GM3-dominant patterns with advancing ages. While GM1 was expressed only at early stages of the development, GM4, GM2, and ganglioside X appeared after Postnatal Day 3. The expression of c-series gangliosides was less affected through the period examined. These results suggest that gangliosides may be implicated with development and function of rat kidney.  相似文献   

6.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

7.
Gangliosides are particularly abundant in the central nervous system (CNS) and thought to play important roles in memory formation, neuritogenesis, synaptic transmission, and other neural functions. Although several molecular species of gangliosides have been characterized and their individual functions elucidated, their differential distribution in the CNS are not well understood. In particular, whether the different molecular species show different distribution patterns in the brain remains unclear. We report the distinct and characteristic distributions of ganglioside molecular species, as revealed by imaging mass spectrometry (IMS). This technique can discriminate the molecular species, raised from both oligosaccharide and ceramide structure by determining the difference of the mass-to-charge ratio, and structural analysis by tandem mass spectrometry. Gangliosides in the CNS are characterized by the structure of the long-chain base (LCB) in the ceramide moiety. The LCB of the main ganglioside species has either 18 or 20 carbons (i.e., C18- or C20-sphingosine); we found that these 2 types of gangliosides are differentially distributed in the mouse brain. While the C18-species was widely distributed throughout the frontal brain, the C20-species selectively localized along the entorhinal-hippocampus projections, especially in the molecular layer (ML) of the dentate gyrus (DG). We revealed development- and aging-related accumulation of the C-20 species in the ML-DG. Thus it is possible to consider that this brain-region specific regulation of LCB chain length is particularly important for the distinct function in cells of CNS.  相似文献   

8.
A sensitive assay system for receptor activity of gangliosides to paramyxovirus was developed. This system involves incorporation of gangliosides into neuraminidase-treated chicken erythrocytes (asialoerythrocytes) followed by estimation of virus-mediated agglutination and hemolysis. The asialoerythrocytes coated with I-active ganglioside (Sia alpha 2-3Gal beta 1-4GlcNAc beta 1-3(Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer) were effectively agglutinated by hemagglutinating virus of Japan (HVJ, Sendai virus). The hemolysis of the asialoerythrocytes mediated by HVJ was restored to the highest level by labeling the cells with gangliosides possessing lacto-series oligosaccharide chains, i.e., I-active ganglioside, N-acetylneuraminosylparagloboside (SiaPG(NeuAc)), and i-active ganglioside (Sia alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer). The specific receptor activity of ganglioside GD1a possessing a gangliotetraose chain was lower than those of the gangliosides described above. Gangliosides GM3, GD3, GM1a, GD1b, SiaPG(NeuGc) showed little effect on the restoration of HVJ-mediated hemolysis. On infection with Newcastle disease virus (NDV), the highest specific restoration of lysis was found in chicken asialoerythrocytes coated with SiaPG(NeuAc or NeuGc) and GM3(NeuAc or NeuGc), whereas those coated with I-active ganglioside, GD3, GM1a, and GD1b showed very low NDV-mediated hemolysis. The above results indicate that the determinants of receptor for HVJ contain sialylated branched and/or linear lacto-series oligosaccharides carried by I,i-active gangliosides and SiaPG(NeuAc) and sialosylgangliotetraose chain carried by GD1a. The determinants for NDV are carried by SiaPG(NeuAc or NeuGc) containing linear lacto-series oligosaccharide and GM3(NeuAc or NeuGc). The absence of detectable binding of free oligosaccharides obtained from I-active ganglioside and sialoglycoprotein GP-2 isolated from bovine erythrocyte membranes as HVJ receptor (Suzuki, Y., et al. J. Biochem. (1983) 93, 1621-1633; (1984) 95, 1193-1200) indicates that HVJ recognizes the sialooligosaccharides oriented out of the lipid bilayer in the cell membranes where the hydrophobic ceramide or peptide backbone of the receptor is integrated.  相似文献   

9.
First, we attempted to isolate glycosphingolipids from eel serum HDL. A single ganglioside containing N-acetylneuraminic acid (NeuAc), which is positive with resorcinol and orcinol reactions, was purified. The mobilities of the purified ganglioside and its lyso-form on high performance TLC were similar as those of authentic GM4 and its lyso-form, respectively. The mass of the purified ganglioside was determined by TOF mass spectrometer, and the mass of its oligosaccharide was the same as that of authentic GM4 from human brain consisting of disaccharide of NeuAc and galactose. The ganglioside from eel HDL was not hydrolyzed by recombinant endoglycoceramidase II, which cannot hydrolyze between galactose and ceramide of gangliosides, but hydrolyzes between glucose and ceramide. We concluded from these results that the ganglioside purified from eel serum HDL is GM4. Second, we investigated the effects of the ganglioside on binding of HDL labeled with fluorescein isothiocyanate (FITC-HDL) to cultured eel hepatocytes and on FITC-HDL ligand blotting by using plasma membrane proteins of the hepatocytes. Stimulatory effect of GM4 on FITC-HDL binding to the hepatocytes and FITC-HDL ligand blotting suggests strongly that GM4 is a ligand for HDL binding protein of eel hepatocytes.  相似文献   

10.
Subcellular distribution and biosynthesis of rat liver gangliosides   总被引:6,自引:0,他引:6  
Gangliosides have generally been assumed to be localized primarily in the plasma membrane. Analysis of gangliosides from isolated subcellular membrane fractions of rat liver indicated that 76% of the total ganglioside sialic acid was present in the plasma membrane. Mitochondria and endoplasmic reticulum fractions, while containing only low levels of gangliosides on a protein basis, each contained approx. 10% of total ganglioside sialic acid. Gangliosides also were present in the Golgi apparatus and nuclear membrane fractions, and soluble gangliosides were in the supernatant. Individual gangliosides were non-homogeneously distributed and each membrane fraction was characterized by a unique ganglioside composition. Plasma membrane contained only 14 and 28% of the total GD1a and GD3, respectively, but 80-90% of the GM1, GD1b, GT1b and GQ1b. Endoplasmic reticulum, when corrected for plasma membrane contamination, contained only trace amounts of GM1, GD1b, GT1b and GQ1b, but 11 and 5% of the total GD1a and GD3, respectively. The ganglioside composition of highly purified endoplasmic reticulum was similar. Ganglioside biosynthetic enzymes were concentrated in the Golgi apparatus. However, low levels of these enzymes were present in the highly purified endoplasmic reticulum fractions. Pulse-chase experiments with [3H]galactose revealed that total gangliosides were labeled first in the Golgi apparatus, mitochondria and supernatant within 10 min. Labeled gangliosides were next observed at 30 min in the endoplasmic reticulum, plasma membrane and nuclear membrane fractions. Analysis of the individual gangliosides also revealed that GM3, GM1, GD1a and GD1b were labeled first in the Golgi apparatus at 10 min. These studies indicate that gangliosides synthesized in the Golgi apparatus may be transported not only to the plasma membrane, but to the endoplasmic reticulum and to other internal endomembranes as well.  相似文献   

11.
Several components of milk fat globule membranes (MFGMs) have been reported to display beneficial health properties and some of them have been implicated in the defense of newborns against pathogens. These observations prompted us to determine the glycosphingolipid content of MFGMs and their interaction with pathogens. A comparative study with whole milk components was also carried out. Milk fat globules and MFGMs were isolated from milk. Gangliosides and neutral glycosphingolipids were obtained from MFGMs and whole milk and their fatty acid contents were determined by gas chromatography-mass spectrometry (GC-MS). MFGMs and whole milk showed similar ganglioside and neutral glycosphingolipid contents, with whole milk having more GM3 and glucosylceramide and less GD3, O-acetyl GD3, O-acetyl GT3, and lactosylceramide. The fatty acid content of gangliosides from both sources showed a similar composition. However, the neutral glycosphingolipid fatty acid content seemed to be quite different. Whole milk had fewer very-long-chain fatty acids (18.1% vs. 46.4% in MFGMs) and more medium-chain and unsaturated C18:1 and C18:2 fatty acids. Milk fat globules, MFGMs, lactosylceramide, and gangliosides GM3 and GD3 were observed to bind enterotoxigenic Escherichia coli strains. Furthermore, bacterial hemagglutination was inhibited by MFGMs and glycosphingolipids.  相似文献   

12.
Ganglioside Composition in Human Meningiomas   总被引:4,自引:3,他引:1  
The ganglioside composition in meningioma specimens from 20 patients was analyzed to find potential meningioma-associated structures. The characterization was performed by immunological staining with specific monoclonal antibodies to ganglioside antigens and fast atom bombardment-mass spectrometry. The major gangliosides were GM3 and GD3, and most of the meningioma specimens could be divided into a "GM3-rich" or a "GD3-rich" group. Gangliosides of the gangliotetraose series were represented by GM1, GD1a, GD1b, and GT1b, which were found in minor amounts in all the specimens. The ratios of GM1/GD1a and GD1a/GD1b differed from that in normal brain, and therefore existence of this series could not be explained by contamination with brain material. Ganglioside 3'-isoLM1, found in human malignant glioma, could not be detected in any meningioma specimen.  相似文献   

13.
M Masserini  P Palestini  E Freire 《Biochemistry》1989,28(12):5029-5034
The thermotropic behavior of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides has been studied by high-sensitivity heating and cooling differential scanning calorimetry. These studies have been directed to identify and evaluate the influence of both the ganglioside lipidic portion and oligosaccharide moiety on the physical properties of phospholipid bilayers containing gangliosides. The influence of the ganglioside lipidic portion has been evaluated by studying the behavior of vesicles containing different GD1a molecular species carrying homogeneous lipid moieties (C20 or C18 sphingosine or sphinganine and stearic acid). The influence of the ganglioside saccharide portion was evaluated by investigating the thermotropic behavior of vesicles containing different gangliosides (GM1, Fuc-GM1, GD1a, GT1b) carrying the same homogeneous long-chain base moiety (C20 sphingosine and stearic acid). These studies, in conjunction with previous studies using homogeneous lipidic portion ganglioside GM1 and phosphatidylcholines of various chain lengths [Masserini, M., & Freire, E. (1986) Biochemistry 25, 1043-1049], indicate that, for a given oligosaccharide composition, gangliosides exhibit lateral phase separation in an extent dependent upon the length and unsaturation difference between the ganglioside long-chain base and phosphatidylcholine acyl chains. For a given ganglioside lipidic composition the extent of phase separation is dependent upon the number of sugar units present in the glycolipid. The addition of Ca2+ induces or enhances phase separation in a manner dependent on the long-chain base and oligosaccharide composition. Cooling differential scanning calorimetry experiments showed that the ganglioside property to form aggregates within the membrane is independent of the initial physical state of the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The binding specificities of heat-labile enterotoxins (LTp and LTh) isolated from porcine and human enterotoxigenic Escherichia coli on human erythrocytes were studied by competitive binding assays using different gangliosides as inhibitors. The binding of 125I-labeled LTp to neuraminidase-treated human type A erythrocytes was most effectively inhibited by ganglioside GM1. Ganglioside GM1 was 11 and 105 times more potent than gangliosides GD1b and GM2, respectively. Gangliosides GD1a, GT1b, and GM3 were much less potent. Similar results were also obtained in competitive binding assays with the 125I-labeled B subunit of LTh and neuraminidase-treated human type B erythrocytes, and in those with 3H-labeled ganglioside GM1 and LTp-coupled Sepharose 4B. The binding of 3H-labeled ganglioside GM1 to LTp was not effectively inhibited by galactose-beta(1----3)N-acetyl-D-galactosamine at the highest concentration used. These findings suggest that the combining sites of LTp and LTh may be specific for at least the galactose-N-acetyl-D-galactosamine-galactose (N-acetyl-neuraminic acid) portion of ganglioside GM1.  相似文献   

15.
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells.  相似文献   

16.
We systematically examined the effects of gangliosides on the plasma membrane Ca(2+)-ATPase (PMCA) from porcine brain synaptosomes. Our results showed that GD1b (two sialic acid residues) stimulated the activity, GM1 (one sialic acid residue) slightly reduced the activity, while asialo-GM1 (no sialic acid residue) markedly inhibited it, suggesting that sialic acid residues of gangliosides are important in the modulation of the PMCA. We also examined the oligosaccharide effects by using GM1, GM2, and GM3 whose only difference was in the length of their oligosaccharide chain. GM1, GM2, and GM3 reduced the enzyme activities, whereas GM2 and GM3 were potent inhibitors. Gangliosides affect both affinity for Ca(2+) and the Vmax of enzyme. It was observed that GD1b and GM2 increased the affinity of the enzyme for Ca(2+). GD1b, GM2 affected the Vmax with an increase of GD1b, but decreases of GM2. The study of the affinity for ATP and the Vmax of enzyme in the presence of gangliosides showed that GD1b and GM2 had little effect on the ATP binding to the enzyme, but the Vmax was apparently changed. Moreover, the effects of gangliosides are additive to that of calmodulin, suggesting that the modulation of PMCA by gangliosides should be through a different mechanism. The conformational changes induced by gangliosides were probed by fluorescence quenching. We found that fluorescent quenchers (I(-) and Cs(+)) with opposite charges had different accessibility to the IAEDANS binding to the PMCA in the presence of gangliosides. An apparent red shift (25nm) with increased maximum of fluorescence spectrum was also observed in the presence of GD1b.  相似文献   

17.
Saito M  Sugiyama K 《Life sciences》2000,67(15):1891-1899
Gangliosides of eye lenses from normal and experimentally induced diabetic rats were investigated by methods including glycolipid-overlay techniques. Adult rat eye lens showed a complex ganglioside pattern that consisted of six major ganglioside components. These gangliosides were identified as GM3, GD3, GD1a, GD1b, GT1b, and GQ1b based upon their reactivity to anti-GM1 antibody after in situ sialidase treatment and mobility on thin-layer chromatography (TLC). Gangliosides in eye lens were further characterized by TLC-immunostaining with A2B5, a specific monoclonal antibody directed toward c-series gangliosides. Eye lens contained GT3 as the main c-series ganglioside component. Unexpectedly, the relative concentration of GT3 in total gangliosides of eye lens was highest among neural and extra-neural tissues examined. Administration of streptozotocin to rats caused a severe reduction in the GT3 content in eye lenses as early as day 3 without apparent changes in the composition of major gangliosides. Alloxan failed to produce such an effect despite producing similar hyperglycemic conditions. These results suggest that rat eye lens probably contains a streptozotocin-susceptible cell type(s), which is highly enriched with c-series gangliosides.  相似文献   

18.
Gangliosides induce selective modulation of CD4 from helper T lymphocytes   总被引:6,自引:0,他引:6  
The cluster designation (CD)4 molecule is one of several nonpolymorphic T lymphocyte surface proteins that have been implicated in T cell-target cell interactions, and is thought to play an important role in regulating T helper cell function. Previously, we found that gangliosides inhibited the function of rat T helper cell lines, and simultaneously inhibited the expression of the rat CD4 molecule identified by the W3/25 antibody. We have now evaluated the generality and mechanism(s) of ganglioside-induced modulation of CD4 expressed by mouse, rat, and human T helper lymphocytes. Ganglioside pretreatment induced rapid and selective disappearance of the CD4 molecule from T helper cells of all three species. The ganglioside effect was temperature- and dose-dependent, reversible within 24 hr of ganglioside removal, azide-insensitive, and was neutralized completely by 10% serum. CD4 modulation appeared to be a general property of gangliosides since the effect could be induced similarly by highly purified individual gangliosides with varying amounts of sialic acid, or by mixed gangliosides. The activity of gangliosides appeared to require both the lipid and sialated oligosaccharide moieties. Gangliosides did not inactivate antibody function, but prevented binding at the cell surface by 12 different monoclonal antibodies specific for a variety of different CD4 epitopes. Preclearance of CD4 by antibody-mediated capping reduced binding of 3H-GM1 to T helper cells. Labeled GM1 bound to several detergent-extracted and transblotted lymphocyte-associated proteins, but apparently did not bind directly to the CD4 molecule under these conditions. These results indicate that gangliosides induce a profound change in the molecular orientation of CD4 within the T helper cell membrane which renders epitopes on the CD4 molecule inaccessible to antibody. This ganglioside effect represents a novel pathway which may contribute to the understanding of the role of CD4 as a regulatory molecule and as a specific receptor for the acquired immune deficiency syndrome virus.  相似文献   

19.
The effect of neutral (galactocerebroside and asialo-ganglioside GM1) or anionic (sulphatide and gangliosides GM1, GD1a and GT1b) glycosphingolipids on the activity of phospholipase A2 from pig pancreas was studied in mixed monolayers of dilauroyl phosphatidylcholine with the glycosphingolipids in different molar fractions at various constant surface pressures. The activity of the enzyme depends on the proportion and type of glycosphingolipid in the interface. Sulphatide activates the enzyme at all proportions, whereas galactocerebroside shows inhibition or activation depending on its proportion in the film. Asialo-ganglioside GM1 and gangliosides GM1, GD1a and GT1b can strongly inhibit the enzyme at relatively low molar fractions in the film in the following order: asialo-ganglioside GM1 less than ganglioside GM1 less than ganglioside GT1b less than ganglioside GD1a. The changes of activity are not due to a direct action of the lipids on the active centre or interfacial recognition region of the enzyme.  相似文献   

20.
Eight monosialosylgangliosides, G1 to G8, have been isolated from human erythrocyte membranes and their structures have been determined. Gangliosides G4 and G7 have been characterized by having 2 leads to 6-linked sialic acid to galactose at their termini. Ganglioside G5 was a positional isomer of a brain ganglioside GM1 as to the linkage of sialic acid. Ganglioside G8 was characterized as a branched chain ganglioside similar to a fucoganglioside previously isolated but devoid of fucose, and it showed a strong blood group I activity. Structures of these four new gangliosides are shown below: (formula: see text).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号