首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human epithelial cell cultures were examined for expression of plasminogen activator and fibronectin matrix. All of the cells examined showed ultrastructural evidence suggesting their epithelial origin, including microvilli and specialized junctions. The nonmalignant cells were also negative for endothelial cell markers (ie, they lacked factor VIII antigen, a nonthrombogenic surface and Weibel-Palade bodies). The nonmalignant lines all produced large amounts of plasminogen activator, whereas the tumor-derived lines showed a gradation of activities, ranging from lines having as much activity as the nonmalignant lines to lines having little or no activity above background. For both normal and malignant cells, addition of dexamethesone only slightly decreased the levels of plasminogen activator. By immunofluorescence microscopy, normal bladder and fetal intestine epithelial cells showed fibronectin in a globular and fibrillar matrix. In contrast, normal mammary epithelial cells had a much diminished amount of fibronectin with a punctate distribution.  相似文献   

2.
The effect of dietary taurine on cholesterol metabolism and the distribution of lipoprotein-cholesterol in serum of rats fed a diet containing polychlorinated biphenyls (PCB) was examined. Young male Wistar rats (60 g) were fed diets containing 0.2 g/kg diet of PCB and/or 30 g/kg diet of taurine for 15 days. The experiment was performed as the 2 (PCB) x 2 (taurine) factorial design. The addition of PCB elevated serum levels of total- and HDL-cholesterol and apolipoprotein A-I, which is a major apolipoprotein of HDL. Simultaneous supplementation of taurine with PCB amplified the increase of the serum level of total- and HDL-cholesterol. Hepatic concentrations of cholesterol and total lipids were significantly elevated by the supplementation of PCB, and taurine significantly amplified these increases caused by PCB. PCB suppressed hepatic cholesterol 7alpha-hydroxylase (CYP7A1) gene expression, and taurine induced CYP7A1 gene expression. Taurine also enhanced PCB-induced elevation of malic enzyme mRNA in the liver. These results suggest that taurine enhanced PCB-induced hyper-alpha-cholesterolemia and that taurine has a role in increasing HDL-cholesterol.  相似文献   

3.
Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5–30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5–10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.  相似文献   

4.
5.
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that can induce inflammatory processes in the vascular endothelium. We hypothesize that the plasma membrane microdomains called caveolae are critical in endothelial activation and toxicity induced by PCBs. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. We focused on the role of caveolae and their major protein component, caveolin-1 (Cav-1), on aryl hydrocarbon receptor (AhR)-mediated induction of cytochrome P450 1A1 (CYP1A1) by coplanar PCBs. Endothelial cell exposure to PCB77 increased both caveolin-1 and CYP1A1 levels in a time-dependent manner in total cell lysates, with a maximum increase at 6h. Furthermore, PCB77 accumulated mainly in the caveolae-rich fraction, as determined by gas chromatograph-mass spectrometry. Immunoprecipitation analysis revealed that PCB77 increased AhR binding to caveolin-1. Silencing of caveolin-1 significantly attenuated PCB77-mediated induction of CYP1A1 and oxidative stress. Similar effects were observed in caveolin-1 null mice treated with PCB77. These data suggest that caveolae may play a role in regulating vascular toxicity induced by persistent environmental pollutants such as coplanar PCBs. This may have implications in understanding mechanisms of inflammatory diseases induced by environmental pollutants.  相似文献   

6.
The Pseudomonas aeruginosa secretory product pyocyanin damages lung epithelium, likely due to redox cycling of pyocyanin and resultant superoxide and H(2)O(2) generation. Subcellular site(s) of pyocyanin redox cycling and toxicity have not been well studied. Therefore, pyocyanin's effects on subcellular parameters in the A549 human type II alveolar epithelial cell line were examined. Confocal and electron microscopy studies suggested mitochondrial redox cycling of pyocyanin and extracellular H(2)O(2) release, respectively. Pyocyanin decreased mitochondrial and cytoplasmic aconitase activity, ATP levels, cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, and mitochondrial membrane potential. These effects were transient at low pyocyanin concentrations and were linked to apparent cell-mediated metabolism of pyocyanin. Overexpression of MnSOD, but not CuZnSOD or catalase, protected cellular aconitase, but not ATP, from pyocyanin-mediated depletion. This suggests that loss of aconitase activity is not responsible for ATP depletion. How pyocyanin leads to ATP depletion, the mechanism of cellular metabolism of pyocyanin, and the impact of mitochondrial pyocyanin redox cycling on other cellular events are important areas for future study.  相似文献   

7.
8.
The association found between breast cancer development and prolonged exposure to estrogen suggests that this hormone is of etiologic importance in the causation of this disease. In order to prove this postulate, we treated the immortalized human breast epithelial cells (HBEC) MCF-10F with 17beta-estradiol (E(2)) for testing whether they express colony formation in agar methocel, or colony efficiency (CE), and loss of ductulogenesis in collagen matrix, phenotypes also induced by the carcinogen benz[a]pyrene (BP). MCF-10F cells were treated with 0.0, 0.007, 70nM, or 0.25mM of E(2) twice a week for 2 weeks. CE increased from 0 in controls to 6.1, 9.2, and 8.7 with increasing E(2) doses. Ductulogenesis was 75 +/- 4.9 in control cells; it decreased to 63.7 +/- 28.8, 41.3 +/- 12.4, and 17.8 +/- 5.0 in E(2)-treated cells, which also formed solid masses or spherical formations lined by a multilayer epithelium, whose numbers increased from 0 in controls to 18.5 +/- 6.7, 107 +/- 11.8 and 130 +/- 10.0 for each E(2) dose. MCF-10F cells were also treated with 3.7 microM of progesterone (P) and the CE was 3.39 +/- 4.05. At difference of E(2), P does not impaired the ductulogenic capacity. Genomic analysis revealed that E(2)-treated cells exhibited loss of heterozigosity in chromosome 11, as detected using the markers D11S29 and D11S912 mapped to 11q23.3 and 11q24.2-25, respectively These results also indicate that E(2), like the chemical carcinogen BP, induces in HBEC phenotypes indicative of neoplastic transformation.  相似文献   

9.
The mechanisms through which opioids regulate the activity of malignant breast epithelial cells are currently unknown. In the present study we report the differential actin cytoskeleton reorganization induced by opioids in malignant (MCF7) and nonmalignant (MCF12A) breast epithelial cells expressing functional opioid receptors. Exposure of MCF7 cells to the opioid agonist alpha(s1) casomorphin induced important actin assembly and reorganization, including the formation of filopodia and lamellipodia. In contrast, incubation of MCF12A cells with alpha(s1) casomorphin revealed a partial but transient disassembly of actin microfilaments. Immunoprecipitation and immunoblot analyses showed rapid phosphorylation of focal adhesion kinase (FAK) and vinculin in opioid-treated MCF7 cells. Moreover, FAK associates with phosphatidylinositol-3 (PI-3 kinase), the latter being subsequently phosphorylated and activated. In addition, a substantial activation of the small GTPase Rac1 was observed. Pretreatment of MCF7 cells with the specific PI-3 kinase inhibitor wortmannin abolished both the activation of Rac1 and actin reorganization, while the opioid-induced phosphorylation of FAK and vinculin remained unaffected. Interestingly, in opioid-treated MCF12A cells this signaling cascade remained inactive, while we identified rapid phosphorylation of actin regulating the protein villin. Finally, opioids differentially inhibited cell motility in each cell line. Our data suggest a distinct, opioid-induced, signaling pathway activated in malignant breast epithelial cells, leading to important actin reorganization. These findings may indicate a potential antineoplastic role of opiates, based on the activation of differential signaling mechanisms.  相似文献   

10.

Background  

Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a transmembrane protein with multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-regulation reported in several tumors of epithelial origin and de novo expression of CEACAM1 in lung cancer and malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell lines that varied in CEACAM1 expression from none (MCF7) to moderate (MDA-MB-468) to high (MCF10A, comparable to normal breast).  相似文献   

11.
Summary Normal human breast epithelial cells obtained from a reduction mammoplasty (S130) have been maintained in culture for up to a year in Ham's F12:Dulbecco's medium, with 5% equine serum and a low calcium concentration (0.04 mM). These cells undergo senescence and terminal differentiation if they are switched to high Ca2+ medium (1.05 mM). To clarify the mechanism by which Ca2+ regulates the growth of these cells, we studied the role of tubulin assembly-disassembly and the morphologic changes subsequent to high Ca2+ switch. An early Passage (9) of S130 breast epithelial cells growing in low Ca2+ medium was analyzed. Of a total of 785 counted cells, 720 (92%) were rounded and 65 (8%) were flat, elongated, and fibroblastlike. When the cells were switched to high Ca2+ medium, out of 553 cells, only 111 (20%) were rounded and the remaining 442 (80%) were elongated and fibroblastlike. Immunocytochemical localization of tubulin, using the immunogold silver enhancement technique, showed that the majority of low Ca2+-grown cells did not display a network of tubulin fibers, whereas high Ca2+-grown cells revealed extensive cytoplasmic network of polymerized tubulin, which seemed to stretch out the cells. Experiments designed to determine the mechanisms of tubulin polymerization in these cells revealed that: a) Cells grown in high Ca2+ medium containing 0.1 mM colchicine had a reduced proportion of elongated cells; b) treatement of the cells with the calcium ionophore A23187 in low calcium medium resulted in an increase in the number of elongated cells which had more polymerized tubulin; and d) treatment of the cells with cyclic-AMP in low Ca2+ medium had no observable effect on cell morphology. These results indicate that high levels of Ca2+ either favor tubulin polymerization or stabilize the polymerized state. This research was supported by NCI grant CA-38921 from the National Cancer Institute, Bethesda, MD, and by an institutional grant from the United Foundation of Greater Detroit.  相似文献   

12.
Active proteinase inhibitors associated with human breast epithelial cells   总被引:1,自引:0,他引:1  
The major glycoproteins synthesized by human breast epithelial cells have been characterized [6,8]. The most consistently observed and prominent component in supernatants of organ cultures of breast surgical specimens and of MCF-7 cells was gp 68 which has been immunologically identified as alpha-1-antichymotrypsin (Achy). In the present study we demonstrate that this glycoprotein can form an irreversible complex with chymotrypsin, which indicates that it is a functional inhibitor. The 14C-glucosamine-labeled gp 68 forms a stable, 88,000-dalton, enzyme-inhibitor complex with chymotrypsin. The molecule is secreted continuously for 9 days into a chemically defined, serum-free medium. In addition to the de novo synthesized inhibitor, another component is absorbed from fetal bovine serum and subsequently released into serum-free medium. This component also forms an irreversible, 88,000-dalton complex with enzyme. The observations establish that two types of inhibitors are associated with human breast epithelial cells, one actively synthesized and the other derived from serum. Both of these molecules may have significant roles in stabilizing cell surface components and in protecting extracellular matrices from untimely degradation.  相似文献   

13.
Synopsis Purified preparations of epithelial cells have been made from the guinea-pig small intestine. Homogenates of these preparations have been analysed by centrifugation in a zonal rotor. The results confirm the presence of lysosomes in these cells and indicate the existence of catalase particles which equilibrate in a sucrose gradient at a density of between 1.21 and 1.23 and which have a different distribution from other subcellular particles except lysosomes. Injection of Triton WR-1339 into fasting animals enables the separation of lysosomes and catalase particles.  相似文献   

14.
The sphingolipid ceramide is involved in diverse cell signaling pathways related to proliferation and differentiation. Elevated ceramide also triggers apoptosis. Synthetic ceramide derivatives have been shown to be cytotoxic to tumors, yet few studies have evaluated whether cytotoxicity of synthetic ceramides is selective for tumor cells. We have evaluated the cytotoxic potency of several novel ceramide analogues in the drug-resistant breast tumor cell lines, SKBr3 and MCF-7/Adr, and compared their cytotoxicity in normal breast epithelial cells. Cytotoxicity was assessed using release of lactate dehydrogenase into the culture medium. (2S, 3S)-3-(6'-Dodecylpyridin-2'-yl)-2-butanoylamidopropane-1,3-diol (pyridine-C4-ceramide) produced non-selective cytotoxicity across the three cell types (EC50= 12.8-16.7 microM, at 24 hr). However, 2S,5R-2-(octanoylamido-(3E))-octadecene-1,5-diol (5R-OH-3E-C8-ceramide), (2S,3R)-2-(N-adamantoyl)-(4E)-octadecen-1,3-diol (adamantyl-ceramide), and (2S,3R)-3-(3'-dodecylphenyl)-2-butanoylamidopropane-1,3-diol (benzene-C4-ceramide) exhibited increased cytotoxicity in the tumor cell lines compared to the normal breast epithelial cells. The EC50 values (microM) at 24 hr for these compounds in SKBr3 cells, MCF-7/Adr cells, and normal breast epithelial cells, respectively, were as follows: 5R-OH-3E-C8-ceramide, 18.3, 21.2 and 58.7; adamantyl-ceramide, 10.9, 24.9 and >100; benzene-C4-ceramide, 18.9, 45.5 and >100. At a concentration of 30 microM, the fold increase in cytotoxicity in breast tumor cell lines compared with normal breast epithelial cells was as follows: 5R-OH-3E-C8-ceramide, 23.7 and 19; adamantyl-ceramide, 11.2 and 10.3 and benzene-C4-ceramide, 79.3 and 77.2, for SKBr3 and MCF-7/Adr cells, respectively. Possible mechanisms accounting for selectivity are discussed. Ceramide analogues with relatively selective toxicity against tumor cells may have potential as therapeutic agents. Elucidating the mechanisms of selective cytotoxicity could identify novel targets that may lead to development of anti-neoplastic agents with a higher therapeutic index.  相似文献   

15.
16.
Oxidatively induced stress and DNA damage have been associated with various human pathophysiological conditions, including cancer and aging. Complex DNA damage such as double-strand breaks (DSBs) and non-DSB bistranded oxidatively induced clustered DNA lesions (OCDL) (two or more DNA lesions within a short DNA fragment of 1-10 bp on opposing DNA strands) are hypothesized to be repair-resistant lesions challenging the repair mechanisms of the cell. To evaluate the induction and processing of complex DNA damage in breast cancer cells exposed to radiotherapy-relevant gamma-ray doses, we measured single-strand breaks (SSBs), DSBs, and OCDL in MCF-7 and HCC1937 malignant cells as well as MCF-10A nonmalignant human breast cells. For the detection and measurement of SSBs, DSBs, and OCDL, we used the alkaline single-cell gel electrophoresis, gamma-H2AX assay, and an adaptation of pulsed-field gel electrophoresis with E. coli repair enzymes as DNA damage probes. Increased levels for most types of DNA damage were detected in MCF-7 cells while the processing of DSBs and OCDL was deficient in these cells compared to MCF-10A cells. Furthermore, the total antioxidant capacity of MCF-7 cells was lower compared to their nonmalignant counterparts. These findings point to the important role of complex DNA damage in breast cancer and its potential association with breast cancer development especially in the case of deficient BRCA1 expression.  相似文献   

17.
High glucose-induced protein synthesis in the glomerular epithelial cell (GEC) is partly dependent on reduction in phosphorylation of AMP-activated protein kinase (AMPK). We evaluated the effect of resveratrol, a phytophenol known to stimulate AMPK, on protein synthesis. Resveratrol completely inhibited high glucose stimulation of protein synthesis and synthesis of fibronectin, an important matrix protein, at 3 days. Resveratrol dose-dependently increased AMPK phosphorylation and abolished high glucose-induced reduction in its phosphorylation. We examined the effect of resveratrol on critical steps in mRNA translation, a critical event in protein synthesis. Resveratrol inhibited high glucose-induced changes in association of eIF4E with eIF4G, phosphorylation of eIF4E, eEF2, eEF2 kinase and, p70S6 kinase, indicating that it affects important events in both initiation and elongation phases of mRNA translation. Upstream regulators of AMPK in high glucose-treated GEC were explored. High glucose augmented acetylation of LKB1, the upstream kinase for AMPK, and inhibited its activity. Resveratrol prevented acetylation of LKB1 and restored its activity in high glucose-treated cells; this action did not appear to depend on SIRT1, a class III histone deacetylase. Our data show that resveratrol ameliorates protein synthesis by regulating the LKB1–AMPK axis.  相似文献   

18.
Action spectra were determined for cell killing and mutation by monochromatic ultraviolet and visible radiations (254-434 nm) in cultured human epithelial P3 cells. Cell killing was more efficient following radiation at the shorter wavelengths (254-434 nm) than at longer wavelengths (365-434 nm). At 254 nm, for example, a fluence of 11 Jm-2 gave 37% cell survival, while at 365 nm, 17 X 10(5) Jm-2 gave equivalent survival. At 434 nm little killing was observed with fluences up to 3 X 10(6) Jm-2. Mutant induction, determined at the hypoxanthine-guanine phosphoribosyltransferase locus, was caused by radiation at 254, 313, and 365 nm. There was no mutant induction at 334 nm although this wavelength was highly cytotoxic. Mutagenesis was not induced by 434 nm radiation, either. There was a weak response at 405 nm; the mutant frequencies were only slightly increased above background levels. For the mutagenic wavelengths, log-log plots of the mutation frequency against fluence showed linear regressions with positive slopes of 2.5, consistent with data from a previous study using Escherichia coli. The data points of the action spectra for lethality and mutagenesis were similar to the spectrum for DNA damage at wavelengths shorter than 313 nm, whereas at longer wavelengths the lethality spectrum had a shoulder, and the mutagenesis spectrum had a secondary peak at 365 nm. No correlation was observed for the P3 cells between the spectra for cell killing and mutagenesis caused by wavelengths longer than 313 nm and the induction of DNA breakage or the formation of DNA-to-protein covalent bonds in these cells.  相似文献   

19.
20.
Estrogens play a crucial role in the development and evolution of human breast cancer. However, it is still unclear whether estrogens are carcinogenic to the human breast. There are three mechanisms that have been considered to be responsible for the carcinogenicity of estrogens: receptor-mediated hormonal activity, a cytochrome P450 (CYP)-mediated metabolic activation, which elicits direct genotoxic effects by increasing mutation rates, and the induction of aneuploidy by estrogen. To fully demonstrate that estrogens are carcinogenic in the human breast through one or more of the mechanisms explained above it will require an experimental system in which, estrogens by itself or one of the metabolites would induce transformation phenotypes indicative of neoplasia in HBEC in vitro and also induce genomic alterations similar to those observed in spontaneous malignancies. In order to mimic the intermittent exposure of HBEC to endogenous estrogens, MCF-10F cells that are ERalpha negative and ERbeta positive were first treated with 0, 0.007, 70 nM and 1 microM of 17beta-estradiol (E(2)), diethylstilbestrol (DES), benz(a)pyrene (BP), progesterone (P), 2-OH-E(2), 4-hydoxy estradiol (4-OH-E(2)) and 16-alpha-OH-E(2) at 72 h and 120 h post-plating. Treatment of HBEC with physiological doses of E(2), 2-OH-E(2), 4-OH-E(2) induce anchorage independent growth, colony formation in agar methocel, and reduced ductulogenic capacity in collagen gel, all phenotypes whose expression are indicative of neoplastic transformation, and that are induced by BP under the same culture conditions. The presence of ERbeta is the pathway used by E(2) to induce colony formation in agar methocel and loss of ductulogenic in collagen gel. This is supported by the fact that either tamoxifen or the pure antiestrogen ICI-182,780 (ICI) abrogated these phenotypes. However, the invasion phenotype, an important marker of tumorigenesis is not modified when the cells are treated in presence of tamoxifen or ICI, suggesting that other pathways may be involved. Although we cannot rule out the possibility, that 4-OH-E(2) may interact with other receptors still not identified, with the data presently available the direct effect of 4-OH-E(2) support the concept that metabolic activation of estrogens mediated by various cytochrome P450 complexes, generating through this pathway reactive intermediates that elicit direct genotoxic effects leading to transformation. This assumption was confirmed when we found that all the transformation phenotypes induced by 4-OH-E(2) were not abrogated when this compound was used in presence of the pure antiestrogen ICI. The novelty of these observations lies in the role of ERbeta in transformation and that this pathway can successfully bypassed by the estrogen metabolite 4-OH-E(2). Genomic DNA was analyzed for the detection of micro-satellite DNA polymorphism using 64 markers covering chromosomes (chr) 3, 11, 13 and 17. We have detected loss of heterozygosity (LOH) in ch13q12.2-12.3 (D13S893) and in ch17q21.1 (D17S800) in E(2), 2-OH-E(2), 4-OH-E(2), E(2) + ICI, E(2) + tamoxifen and BP-treated cells. LOH in ch17q21.1-21.2 (D17S806) was also observed in E(2), 4-OH-E(2), E(2)+ICI, E(2)+tamoxifen and BP-treated cells. MCF-10F cells treated with P or P+E(2) did not show LOH in the any of the markers studied. LOH was strongly associated with the invasion phenotype. Altogether our data indicate that E(2) and its metabolites induce in HBEC LOH in loci of chromosomes 13 and 17, that has been reported in primary breast cancer, that the changes are similar to those induced by the chemical carcinogen (BP) and that the genomic changes were not abrogated by antiestrogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号