首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory diseases, including coronavirus disease 2019 and chronic obstructive pulmonary disease (COPD), are leading causes of global fatality. There are no effective and curative treatments, but supportive care only. Cell therapy is a promising therapeutic strategy for refractory and unmanageable pulmonary illnesses, as proved by accumulating preclinical studies. Stem cells consist of totipotent, pluripotent, multipotent, and unipotent cells with the potential to differentiate into cell types requested for repair. Mesenchymal stromal cells, endothelial progenitor cells, peripheral blood stem cells, and lung progenitor cells have been applied to clinical trials. To date, the safety and feasibility of stem cell and extracellular vesicles administration have been confirmed by numerous phase I/II trials in patients with COPD, acute respiratory distress syndrome, bronchial dysplasia, idiopathic pulmonary fibrosis, pulmonary artery hypertension, and silicosis. Five routes and a series of doses have been tested for tolerance and advantages of different regimes. In this review, we systematically summarize the global trends for the cell therapy of common airway and lung diseases registered for clinical trials. The future directions for both new clinical trials and preclinical studies are discussed.  相似文献   

2.
New discoveries in stem cell biology are making the biology of solid tissues increasingly complex. Important seminal studies demonstrating the presence of damage-resistant cell populations together with new isolation and characterization techniques suggest that stem cells exist in the adult lung. More detailed in vivo molecular and cellular characterization of bronchioalveolar stem cells (BASCs), other putative lung stem and progenitor cells, and differentiated cells is needed to determine the lineage relationships in adult lung. Lung diseases such as cystic fibrosis or chronic obstructive pulmonary disease, as well as the most common form of lung cancer in the United States, all involve apparent bronchiolar and alveolar cell defects. It is likely that the delicate balance of stem, progenitor, and differentiated cell functions in the lung is critically affected in patients with these devastating diseases. Thus the discovery of BASCs and other putative lung stem cells will lay the foundation for new inroads to understanding lung biology related to lung disease.  相似文献   

3.
用干细胞转录因子OCT4、SOX2、c-MYC和KLF4进行体细胞重编程产生具有胚胎干细胞特性的诱导多能干细胞(iPS细胞)是干细胞研究领域的突破性进展。近年来,iPS细胞的研究从产生方法、重编程机理及实际应用方面不断取得进展。由于iPS细胞的产生可取自体细胞,因而克服了胚胎干细胞应用的伦理学和免疫排斥等缺陷,为iPS细胞的临床应用开辟了广阔的前景。该文将对iPS细胞的产生方法、重编程机理及其在神经性退行性疾病的研究与应用进行文献综述,反映近几年iPS细胞最新研究成果,并阐述了用病人iPS细胞模型探讨帕金森氏病、老年性痴呆症、脊髓侧索硬化症、脊髓肌肉萎缩症及舞蹈症等5种常见神经性退行性疾病发病机理的研究现状。  相似文献   

4.
Progeria, also known as HGPS (Hutchinson-Gilford progeria syndrome), is a rare fatal genetic disease characterized by an appearance of accelerated aging in children. This syndrome is typically caused by mutations in codon 608 (C1804T) of the gene encoding lamins A and C, LMNA, leading to the production of a truncated form of the protein called progerin. Owing to their unique potential to self-renew and to differentiate into any cell types of the organism, pluripotent stem cells offer a unique tool to study molecular and cellular mechanisms related to this global and systemic disease. Recent studies have exploited this potential by generating human induced pluripotent stem cells from HGPS patients' fibroblasts displaying several phenotypic defects characteristic of HGPS such as nuclear abnormalities, progerin expression, altered DNA-repair mechanisms and premature senescence. Altogether, these findings provide new insights on the use of pluripotent stem cells for pathological modelling and may open original therapeutic perspectives for diseases that lack pre-clinical in vitro human models, such as HGPS.  相似文献   

5.
The chromosome translocation forming the hybrid bcr-abl gene is thought to be the initiating event in chronic myeloid leukaemia (CML) and some cases of acute lymphoblastic leukaemia. To assess the impact of bcr-abl upon haemopoiesis, lethally irradiated mice were reconstituted with bone marrow cells enriched for cycling stem cells and infected with a bcr-abl bearing retrovirus. The mice developed several fatal diseases with abnormal accumulations of macrophage, erythroid, mast and lymphoid cells, and marked strain differences in disease distribution and kinetics. Some mice exhibited more than one neoplastic cell type and, in some instances, these were clonally related, indicating that a progenitor or stem cell had been transformed. While classical CML was not observed, the macrophage tumours were accompanied by a mild CML-like syndrome, probably due to myeloid growth factor production by tumour cells. The erythroid and mast cell diseases were rarely transplantable, in contrast to the macrophage tumours and lymphomas, but all disease types displayed limited clonality. These results establish that bcr-abl confers a proliferative advantage on diverse haemopoietic cells but complete transformation probably involves additional genetic changes.  相似文献   

6.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell–derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.  相似文献   

7.
8.
Summary Lysosomal acid hydrolases were determined in established lymphoblastoid cell lines, transformed in vitro by Epstein-Barr virus (EBV) from lymphocyte-rich cell populations isolated from the peripheral blood of patients with genetic lysosomal storage diseases—Hurler syndrome, Scheie syndrome, GM1-gangliosidosis type 1 and type 2, Tay-Sachs disease, and I-cell disease—and from obligate heterozygotes for these diseases.The respective enzyme activity was undectectable in lymphoblastoid cells from the patients, but not from controls. Obligate heterozygotes could not always be distinguished from controls in lymphoblastoid cells as well as in leukocytes. These results suggest that established lymphoblastoid cell lines are useful material for the enzymatic study of genetic lysosomal storage diseases.  相似文献   

9.
Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell‐mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed. J. Cell. Biochem. 114: 743–753, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
诱导多能干细胞(i PS细胞)在小鼠和人上的成功获取,使干细胞领域的研究进入了一个崭新的时代。干细胞研究是再生医学的重要组成部分,研究干细胞的最终目的是应用干细胞治疗疾病,其在疾病模型建立、药物筛选、细胞移植等方面具有极大的应用潜力。i PSCs是由体细胞诱导分化而成的"多能细胞",具备和胚胎干细胞类似的功能,既解决了ESCs的伦理障碍,又为ESCs的获得提供了一条全新的途径,具有重要的理论和应用价值。i PS细胞不仅打破了道德理论的束缚,而且在再生医学、组织工程和药物发现及评价等方面具有积极的价值。神经系统遗传性疾病发病率居各系统遗传病之首,但其发病的分子机制仍不完全清楚,运用体细胞重编程技术建立的疾病特异性诱导多能干细胞模型将有助于揭示神经系统遗传性疾病的发病机理。近几年i PS细胞最新研究成果表明,利用疾病患者i PS细胞模型已逐渐应用于帕金森氏病、老年性痴呆症、脊髓侧索硬化症、脊髓肌肉萎缩症及舞蹈症等5种常见神经性退行性疾病发病机理的研究。本文主要对i PSc的发展历程,避免病毒基因干扰诱导i PS细胞进行的优化,以及干细胞尤其是i PS细胞移植治疗帕金森病等神经系统疾病的现状及应用前景进行系统阐述与论证。  相似文献   

11.
The clinical potential of stem cells   总被引:14,自引:0,他引:14  
Stem cells are defined by their capacity for self-renewal and multilineage differentiation, making them uniquely situated to treat a broad spectrum of human diseases. For example, because hematopoietic stem cells can reconstitute the entire blood system, bone marrow transplantation has long been used in the clinic to treat various diseases. Similarly, the transplantation of other tissue-specific stem cells, such as stem cells isolated from epithelial and neural tissues, can treat mouse disease models and human patients in which epithelial and neural cells are damaged. An alternative to tissue-specific stem cell therapy takes advantage of embryonic stem cells, which are capable of differentiating into any tissue type. Furthermore, nuclear transfer, the transfer of a post-mitotic somatic cell nucleus into an enucleated oocyte, creates a limitless source of autologous cells that, when combined with gene therapy, can serve as a powerful therapeutic tool.  相似文献   

12.
Modern stem cell biology has achieved a transformation that was thought by many to be every bit as unattainable as the ancient alchemists' dream of transforming base metals into gold. Exciting opportunities arise from the process known as 'cellular reprogramming' in which cells can be reliably changed from one tissue type to another. This is enabling novel approaches to more deeply investigate the fundamental basis of cell identity. In addition, new opportunities have also been created to study (perhaps even to treat) human genetic and degenerative diseases. Specific cell types that are affected in inherited disease can now be generated from easily accessible cells from the patient and compared with equivalent cells from healthy donors. The differences in cellular phenotype between the two may then be identified, and assays developed to establish therapies that prevent the development or progression of disease symptoms. Cellular reprogramming also has the potential to create new cells to replace those whose death or dysfunction causes disease symptoms. For patients suffering from inherited cases of degenerative diseases like Parkinson's disease or amyotrophic lateral sclerosis (also known as motor neuron disease), the future realization of such cell-based therapies would truly be worth its weight in gold. However, before this enormous potential can become a reality, several significant biological and technical challenges must be overcome. Furthermore, to maintain the credibility of the scientific community with the general public, it is important that hope-inspiring advances are not over-hyped. The papers in this issue of the Philosophical Transactions of the Royal Society B: Biological Sciences cover many areas relevant to this topic. In this Introduction, we provide an overall context in which to consider these individual papers.  相似文献   

13.
异基因造血干细胞移植(allo-HSCT)是治愈多种非恶性病的有效方法。脐带血干细胞(UCB)具有免疫原性低、人类白细胞抗原不合耐受性好、移植物抗宿主反应发生率低以及获取相对快捷等特点,可作为非恶性血液疾病患者allo-HSCT的来源。本文简要综述脐血干细胞移植在原发性免疫缺陷病、遗传性骨髓衰竭、遗传代谢病以及自身免疫性疾病等非恶性血液疾病的治疗效果。  相似文献   

14.
The loss of sight affects approximately 3.4 million people in the United States and is expected to increase in the upcoming years.1 Recently, gene therapy and stem cell transplantations have become key therapeutic tools for treating blindness resulting from retinal degenerative diseases. Several forms of autologous transplantation for age-related macular degeneration (AMD), such as iris pigment epithelial cell transplantation, have generated encouraging results, and human clinical trials have begun for other forms of gene and stem cell therapies.2 These include RPE65 gene replacement therapy in patients with Leber''s congenital amaurosis and an RPE cell transplantation using human embryonic stem (ES) cells in Stargardt''s disease.3-4 Now that there are gene therapy vectors and stem cells available for treating patients with retinal diseases, it is important to verify these potential therapies in animal models before applying them in human studies. The mouse has become an important scientific model for testing the therapeutic efficacy of gene therapy vectors and stem cell transplantation in the eye.5-8 In this video article, we present a technique to inject gene therapy vectors or stem cells into the subretinal space of the mouse eye while minimizing damage to the surrounding tissue.  相似文献   

15.
What is clear is we are in the era of the stem cell and its potential in ameliorating human disease. Our perspective is generated from an in vivo model in a large animal that offers significant advantages (complete transplantation tolerance, large size and long life span). This review is an effort to meld our preclinical observations with others for the reader and to outline potential avenues to improve the present outlook for patients with diabetes. This effort exams the history or background of stem cell research in the laboratory and the clinic, types of stem cells, pluripotency or lack thereof based on a variety of pre-clinical investigations attempting endocrine pancreas recovery using stem cell transplantation. The focus is on the use of hematopoietic and mesenchymal stem cells. This review will also examine recent clinical experience following stem cell transplantation in patients with type 1 diabetes.  相似文献   

16.
17.
The reported pluripotential capabilities of many human stem cell types has made them an attractive area of research, given the belief they may hold considerable therapeutic potential for treating a wide range of human diseases and injuries. Although the bulk of stem cell based research has focused on developing procedures for the treatment of pancreatic, neural, cardiovascular and haematopoietic diseases, the potential for deriving respiratory cell types from stem cells for treatment of respiratory specific diseases has also been explored. It is suggested that stem cell derivatives may be used for lung replacement/regeneration therapeutics and high though-put pharmacological screening strategies for a variety of respiratory injuries and diseases including: cystic fibrosis, chronic obstructive pulmonary disease, respiratory distress syndrome, pulmonary fibrosis and pulmonary edema. This review will explore recent progress in characterizing adult respiratory and bone marrow derived stem cells with respiratory potential as well as the endogenous mechanisms directing the homing of these cells to the diseased and injured lung. In addition, the potential for embryonic stem cell based therapies in this domain as well as the histological, anatomical and molecular aspects of respiratory development will be summarized.  相似文献   

18.
Regenerative medicine is a research field that develops methods to restore damaged cell or tissue function by regeneration, repair or replacement. Stem cells are the raw material of the body that is ultimately used from the point of view of regenerative medicine, and stem cell therapy uses cells themselves or their derivatives to promote responses to diseases and dysfunctions, the ultimate goal of regenerative medicine. Stem cell-derived extracellular vesicles (EVs) are recognized as an attractive source because they can enrich exogenous microRNAs (miRNAs) by targeting pathological recipient cells for disease therapy and can overcome the obstacles faced by current cell therapy agents. However, there are some limitations that need to be addressed before using miRNA-enriched EVs derived from stem cells for multiplexed therapeutic targeting in many diseases. Here, we review various roles on miRNA-based stem cell EVs that can induce effective and stable functional improvement of stem cell-derived EVs. In addition, we introduce and review the implications of several miRNA-enriched EV therapies improved by multiplexed targeting in diseases involving the circulatory system and nervous system. This systemic review may offer potential roles for stem cell-derived therapeutics with multiplexed targeting.  相似文献   

19.
Many patients suffer from chronic gastrointestinal diseases characterized by chronic inflammation, increased intestinal permeability and visceral pain in which there is no definitive treatment. Adult stem cells have recently been used in various disease states to contribute wound-healing processes. In the current study we investigated the ability of intra-colonic adult stem cells application to heal colonic inflammation in IL-10(-/-) mice with active colitis. The aims of this study were to determine whether intra-colonic infusion of adult colonic stem cells (CSCs) (local stem cell transplantation): (i) restores intestinal permeability; (ii) attenuates visceral hypersensitivity; (iii) heals murine colitis. IL-10(-/-) mice with active colitis were transplanted with adult stem cells. Mice received either a single intracolonic infusion of CSCs or colonic epithelial cells. Two weeks after transplantation, we measured visceral hypersensitivity and intestinal permeability and correlated these with histological improvement of colitis. IL-10(-/-) mice that received stem cell transplantation showed histopathologic evidence of recovery from colitis. Improvement in colitis as graded by pathology scores correlated with restoration of intestinal permeability and decreased visceral hypersensitivity. Intra-colonic administration of CSCs is a potential therapeutic method for treating refractory symptoms in patients with chronic gastrointestinal diseases associated with chronic inflammation and visceral hypersensitivity. This method may be safer and should have far fewer side effects than systemic stem cell administration.  相似文献   

20.
Han SS  Williams LA  Eggan KC 《Neuron》2011,70(4):626-644
Among the disciplines of medicine, the study of neurological disorders is particularly challenging. The fundamental inaccessibility of the human neural types affected by disease prevents their isolation for in?vitro studies of degenerative mechanisms or for drug screening efforts. However, the ability to reprogram readily accessible tissue from patients into pluripotent stem (iPS) cells may now provide a general solution to this shortage of human neurons. Gradually improving methods for directing the differentiation of patient-specific stem cells has enabled the production of several neural cell types affected by disease. Furthermore, initial studies with stem cell lines derived from individuals with pediatric, monogenic disorders have validated the stem cell approach to disease modeling, allowing relevant neural phenotypes to be observed and studied. Whether iPS cell-derived neurons will always faithfully recapitulate the same degenerative processes observed in patients and serve as platforms for drug discovery relevant to common late-onset diseases remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号