共查询到20条相似文献,搜索用时 0 毫秒
1.
A DNA-intercalating Ru(II) polypyridyl complex [Ru(bpy)2(appo)]2+ (bpy = 2,2′-bipyridine, appo = 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one) has been synthesized and characterized by elemental analysis, electrospray mass spectra, 1H NMR, UV/Vis spectrum, fluorescent spectrum and electrochemistry. The DNA-binding, photocleavage, and topoisomerase inhibition of the complex was studied. Interestingly, the complex binds to DNA via an intercalative mode with preference for GC sequences and cleaves the pBR322 DNA upon irradiation. In addition, the complex shows high inhibition activity against topoisomerase II by interfere the DNA religation. 相似文献
2.
Peiju Yang Cui Zhang Xiao-Juan Yang Huai-Ming Hu Biao Wu 《Inorganica chimica acta》2009,362(1):89-3592
A series of nickel(II) and cobalt(II) complexes, NiX2L (X = Cl, Br; 1-6) and CoCl2L (7-9), with 2,9-diaryl-1,10-phenanthroline ligands (L1-L3) have been synthesized and characterized by elemental analysis, UV-Vis, IR spectroscopy, and X-ray crystal structural study (for 1, 4-7, 9). The solid-state structures of 1, 5-7 and 9 show four-coordinate, slightly flattened tetrahedral geometry at the Ni(II) or Co(II) center, while 4 is five-coordinated (square-pyramidal), containing a THF molecule as an auxiliary ligand. The title complexes (1-9) display good catalytic activities in ethylene oligomerization when activated with methylaluminoxane (MAO). While the Co(II) precatalysts produce primarily C4 isomers, the Ni(II) complexes give ethylene dimers and trimers at normal pressure. The activities and yields of linear α-olefins increase with increasing ethylene pressure for the Ni(II) complexes, leading to more high-molar-mass products (C8-C18). Complex 6 displays the best catalytic activity among the complexes studied (up to 1518 kg/mol[Ni] h at 10 atm). 相似文献
3.
Feng Gao Hui Chao Feng Zhou Xin Chen Yuan-Fang Wei Liang-Nian Ji 《Journal of inorganic biochemistry》2008,102(5-6):1050
A DNA-intercalating Ru(II) polypyridyl complex [Ru(bpy)2(appo)]2+ (bpy = 2,2′-bipyridine, appo = 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one) has been synthesized and characterized by elemental analysis, electrospray mass spectra, 1H NMR, UV/Vis spectrum, fluorescent spectrum and electrochemistry. The DNA-binding, photocleavage, and topoisomerase inhibition of the complex was studied. Interestingly, the complex binds to DNA via an intercalative mode with preference for GC sequences and cleaves the pBR322 DNA upon irradiation. In addition, the complex shows high inhibition activity against topoisomerase II by interfere the DNA religation. 相似文献
4.
Congtao Yu Chuanzhu Gao Linkui Bai Qinghua Liu Zhuxin Zhang Yingjie Zhang Bo Yang Chunli Li Peng Dong Xiaojun Sun Yunxu Qian 《Bioorganic & medicinal chemistry letters》2017,27(4):963-966
Six dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,4-phenylenebis(methylene))dicyclohexane-1,2-diamine, have been designed, synthesized and characterized. In vitro cytotoxicity evaluation of these metal complexes against human A549, HCT-116, MCF-7 and HepG-2 cell lines have been carried out. All compounds showed antitumor activity to HepG-2, HCT-116 and A549. Particularly, compounds A1 and A2 exhibited significant better activity than other four compounds and A2 even showed comparable cytotoxicity to cisplatin against HepG-2 cell line. 相似文献
5.
Feng Gao Hui Chao Jin-Quan Wang Yi-Xian Yuan Bin Sun Yuan-Fang Wei Bin Peng Liang-Nian Ji 《Journal of biological inorganic chemistry》2007,12(7):1015-1027
Many antitumor drugs act as topoisomerase inhibitors, and the inhibitions are usually related to DNA binding. Here we designed
and synthesized DNA-intercalating Ru(II) polypyridyl complexes Δ--[Ru(bpy)2(uip)]2+ and Λ-[Ru(bpy)2(uip)]2+ (bpy is 2,2′-bipyridyl, uip is 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding, photocleavage, topoisomerase inhibition, and cytotoxicity of the complexes were studied.
As we expected, the synthesized Ru(II) complexes can intercalate into DNA base pairs and cleave the pBR322 DNA with high activity
upon irradiation. The mechanism studies reveal that singlet oxygen (1O2) and superoxide anion radical (O2•−) may play an important role in the photocleavage. The inhibition of topoisomerases I and II by the Ru(II) complexes has been
studied. The results suggest that both complexes are efficient inhibitors towards topoisomerase II by interference with the
DNA religation and direct topoisomerase II binding. Both complexes show antitumor activity towards HELA, hepG2, BEL-7402,
and CNE-1 tumor cells.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
6.
Four related ruthenium(III) complexes, with the formula mer-[RuCl3(dmso)(N−N)] (dmso = dimethyl sulfoxide; N−N = 2,2′-bipyridine (1), 1,10-phenantroline (2), dipyrido[3,2-f:2′,3′-h]quinoxaline (3) and dipyrido[3,2-a:2′,3′-c]phenazine (4)), have been reported. Complexes 3 and 4 are newly synthesized and characterized by X-ray diffraction. The hydrolysis process of 1-4 has been studied by UV-vis measurement, and it has been found that the extension of the N−N ligands can increase the stability of the complexes. The binding of these complexes with DNA has been investigated by plasmid cleavage assay, competitive binding with ethidium bromide (EB), DNA melting experiments and viscosity measurements. The DNA binding affinity is increased with the extension of the planar area of the N−N ligands, and complex 4 shows an intercalative mode of interaction with DNA. The in vitro anticancer activities of these compounds are moderate on the five human cancer cell lines screened. 相似文献
7.
The cobalt(II) complexes [Co(TPA)Cl]ClO4 (1), [Co(TPA)Br]ClO4 (2), [Co(TPA)(H2O)]Cl(ClO4) (3) and [Co2(TPA)2(μ-tp)](ClO4)2 · 2H2O (4) (TPA = tris(2-methylpyridyl)amine and tp = terephthalate dianion) were synthesized and structurally characterized by UV-vis and IR spectroscopy. The molecular structures of complexes 1 and 4 were determined by X-ray crystallography and their magnetic properties were measured over the temperature range 2-300 K. The coordination geometry around the central Co(II) in these compounds has a distorted trigonal bipyamidal geometry with four nitrogen atoms from the TPA ligand and the fifth coordination site is occupied by Cl− ion in 1, Br− ion in 2, coordinated oxygen atom from H2O in 3 and by an oxygen atom supplied by the carboxylate group of the bridged terephthalato ligand in 4. The visible spectra of the complexes 1-3 in MeOH show strong distortion toward tetrahedral geometry. For complex 4, analysis of the infrared spectral data for the ν(COO−) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(monodentate) coordination mode for the bridged tp. X-ray data for 1 and 4 show that the former is mononuclear while the latter is dinuclear. The electronic spectrum of 4 in MeOH is in complete agreement with the assigned X-ray geometry around the Co(II) centers. The magnetic behavior of the mononuclear complex 1 is indicative of a high-spin compound with zero-field splitting. The best fit was obtained with ∣D∣ = 7.3 cm−1, g = 2.25. The dinuclear complex 4 exhibits weak antiferromagnetic coupling with a coupling constant J = −0.8 cm−1. The magnetic properties and the structural parameters of 4 are discussed in relation to the other related μ-terephthalato dinuclear Co(II) compounds. The geometry of the coordination sphere around 4 is unique - the CSD compilation listing only one other compound with such a geometry around the dinuclear Co(II) complex and its composition is far different from that in 4. However, they share a common feature of having a weakly antiferromagnetic coupling between Co(II) centers. 相似文献
8.
Methanesulfonicacid hydrazide (a sulfonamide compound, msh: CH3SO2NHNH2) derivatives: methylsalicylaldehydemethanesulfonylhydrazone (5msalmsh), 5-methyl-2-hydroxyaceto-phenonemethanesulfonylhydrazone (5mafmsh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these sulfonamide compounds has been investigated by using elemental analyses; FT-IR, 1H NMR, 13C NMR, LC-MS, and UV-Vis spectrometric methods; magnetic susceptibility; conductivity measurements; thermal studies. The crystal structure of 5msalmsh has been investigated by X-ray analysis. The antibacterial activities of synthesized compounds were studied against gram positive bacteria: Staphylococcus aureus, Bacillus subtilis, and Bacillus magaterium; and gram negative bacteria: Salmonella enteritidis, and Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. 相似文献
9.
Yasuo Nakabayashi Hiroyuki Inada Yuki Minoura Nobuaki Iwamoto Osamu Yamauchi 《Inorganica chimica acta》2009,362(3):869-4841
For reactions of [{RuCl(bpy)2}2(μ-BL)]2+ (bpy = 2,2′-bipyridine, BL = H2N(CH2)nNH2 (n = 4-8, 12), [Ru2-BL]2+) with mononucleotides, the MLCT absorption bands of [Ru2-BL]2+ blue-shifted with hyperchromism for GMP and hypochromism for TMP with time. Reactions of [Ru2-BL]2+ with GMP or TMP proceed via initial Cl− ions replacement by coordination to N7 of GMP and N3 of TMP, respectively. In competition binding experiments for [Ru2-BL]2+ with GMP versus TMP, only GMP selectively coordinated to ruthenium(II). For reactions with calf thymus (CT) DNA, [Ru2-BL]2+ complexes selectively bind to guanine residues of DNA. The higher degrees of binding of [Ru2-BL]2+ to CT-DNA were observed with increasing n values for H2N(CH2)nNH2, which may be explained by the length of the bridging ligands. Studies on the inhibition of the restriction enzyme Acc I revealed that [Ru2-BL]2+ complexes appear to be covalently favorable for the type of difunctional binding. In addition, it is very interesting to observe that circular dichroism spectroscopy of the supernatants obtained following the reactions of CT-DNA with racemic [Ru2-BL]2+ show enrichments of the solutions in the ΔΔ isomers, demonstrating preferences of the ΛΛ isomers for covalent binding to CT-DNA. 相似文献
10.
Yasuo Nakabayashi Yukiyoshi Watanabe Takeshi Nakao Osamu Yamauchi 《Inorganica chimica acta》2004,357(9):2553-2560
Mixed ligand ruthenium(II) complexes containing an amino acid (AA) and 1,10-phenanthroline (phen), i.e. [Ru(AA)(phen)2]n+ (n=1,2, AA=glycine (gly), l-alanine (l-ala), l-arginine (l-arg)) have been synthesized. The interactions of these complexes and [Ru(phen)3]2+ with DNA have been examined by absorption, luminescence, and circular dichroism spectroscopic methods. Absorption spectral properties revealed that [Ru(AA)(phen)2]+ (AA=gly, l-ala) interacted with CT-DNA by the electrostatic binding mode. [Ru(l-arg)(phen)2]2+ exhibited the greatest hypochromicity, red shift, and binding constant, indicating that this complex may partially intercalate into the base-pairs of DNA. These results were also suggested by luminescence spectroscopy. CD spectral properties have been examined to understand the detailed interactions of the ruthenium(II) complexes with artificial DNA. In the case of Δ-[Ru(l-arg)(phen)2]2+, the solution on adding [poly(dG-dC)]2 exhibited two well-defined positive peaks, which the shorter and longer wavelength peaks were assigned as originating from the major and the minor groove binding modes, respectively. Then, the solution on adding [poly(dA-dT)]2 exhibited only one positive peak, which was assigned as a peak corresponding to the minor groove binding mode. 相似文献
11.
Yi Sun Qian-Xiong Zhou Yuan-Jun Hou Xue-Song Wang Bao-Wen Zhang 《Journal of inorganic biochemistry》2009,103(12):1658-1665
Four cobalt(III) polypyridyl complexes, [Co(phen)3−n(dpq)n]3+ (phen = 1,10-phenanthroline, dpq = dipyrido[3,2-f:2′,3′-h]-quinoxaline) (n = 0, 1, 2, and 3) were synthesized and the influences of the dpq ligand on the photophysical properties, electrochemical properties, DNA binding affinities, as well as photonuclease activities of the complexes, were examined in detail. The presence of dpq ligand increases the DNA binding affinities of the corresponding complexes remarkably with respect to [Co(phen)3]3+. With the sequential substitution of phen ligand by dpq ligand, the 1O2 quantum yields of the corresponding complexes are enhanced greatly. As a result, the photonuclease activities follow the order of [Co(dpq)3]3+ > [Co(phen)(dpq)2]3+ > [Co(phen)2(dpq)]3+ ? [Co(phen)3]3+. It was found all the examined complexes can generate OH upon UV irradiation, and OH is also involved in DNA photocleavage as reactive oxygen species. 相似文献
12.
Na Wang Jie Feng Yu-Ling Zhao Yan-Jun Wang Shi-Kun Li 《Inorganica chimica acta》2010,363(13):3399-3406
Two new mixed-ligand complexes [M(atdz)(DCA)(H2O)2]·2H2O, (M = Co(II), Zn(II); atdz = 2-amino-1,3,4-thiadiazole, C2H3N3S; DCA = demethylcantharate, 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) were prepared and characterized by elemental analysis. The structures of the complexes were determined by X-ray diffraction. The crystals have empirical formulas CoC10H19N3O9S (1) and ZnC10H19N3O9S (2), respectively. Complex 1 and 2 are monoclinic systems with space group P21/m. The structures of the complexes assume severely distorted octahedral geometries. The DNA binding properties of the complexes were investigated by electronic absorption spectra, thermal denaturation studies, fluorescence quenching studies and viscosity measurements. All the results showed the interaction modes between the complexes and DNA were partial intercalation. The results of agarose gel electrophoresis indicated the complexes could cleave supercoiled DNA. The antiproliferative activities testing revealed that all the complexes showed weak to moderate activities against human hepatoma cells (SMMC7721) and human breast cells (MCF-7) in vitro. 相似文献
13.
The mononuclear dipeptide‐based CuII complexes [CuII(trp‐phe)(phen)(H2O)] ⋅ ClO4 ( 1 ) and [CuII(trp‐phe)(bpy)(H2O)] ⋅ ClO4 ( 2 ) (trp‐phe=tryptophanphenylalanine, phen=1,10‐phenanthroline, bpy=2,2′‐bipyridine) were isolated, and their interaction with DNA was studied. They exhibit intercalative mode of interaction with DNA. The intercalative interaction was quantified by Stern Volmer quenching constant (Ksq=0.14 for 1 and 0.08 for 2 ). The CuII complexes convert supercoiled plasmid DNA into its nicked circular form hydrolytically at physiological conditions at a concentration as low as 5 μM (for 1 ) and 10 μM (for 2 ). The DNA hydrolysis rates at a complex concentration of 50 μM were determined as 1.74 h−1 (R=0.985) for 1 and 0.65 h−1 (R=0.965) for 2 . The rate enhancement in the range of 2.40–4.10×107‐fold compared to non‐catalyzed double‐stranded DNA is significant. This was attributed to the presence of a H2O molecule in the axial position of the Cu complexes. 相似文献
14.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):557-564
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA. 相似文献
15.
Synthesis and multi‐spectroscopic study on DNA‐binding,cleavage and biological properties of M(II) complexes based on N2O2 donor Schiff base ligand 下载免费PDF全文
A novel Schiff base, (S,Z)‐4‐(methylthio)‐2‐((3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)amino)butanoic acid (L) and four M(II) complexes (where M = Co, Cu, Ni and Zn) were synthesized and characterized. The DNA‐binding characteristics of the complexes were investigated using various spectroscopic methods and viscosity measurements. Analysis of the results suggests that all the complexes bind to calf thymus DNA via intercalation. Among the four, Cu(II) complex was found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. These complexes also exhibit good antioxidant activities against 2,2‐diphenyl‐1‐picrylhydrazyl radical. In vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents. 相似文献
16.
17.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems. 相似文献
18.
Pramod B. Pansuriya Mohan N. Patel 《Journal of enzyme inhibition and medicinal chemistry》2013,28(1):108-119
The structural and spectroscopic properties of novel five-coordinated dimeric-Cu(II) system have been investigated. The biocidal activities of all eight compounds, ligands, cupric nitrate and standard drugs against six bacteria and three fungi were determined. The DNA interaction activity of complexes was studied using spectrophotometry and electrophoresis. The superoxide dismutase (SOD)-like activity of the complexes was compared with previously reported monomeric- and dimeric copper complexes. The results support the five-coordinated dimeric square pyramidal geometry for the quinolone-Cu(II) system. 相似文献
19.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems. 相似文献
20.
The synthesis, characterization and catalytic activity of a series of tetra-halogeno-dimethyl salen cobalt (II) complexes are reported in this paper. The investigated complexes of cobalt (II) with Schiff bases are: αα′-di-methyl Salen cobalt (II) [Co(dMeSalen)], 3,3′,5,5′-tetra chloro α,α′-di-methyl Salen cobalt (II), [Co(tCldMeSalen)], 3,3′-di-bromo 5,5′-di-chloro α,α′-di-methyl Salen cobalt (II), [Co(tBrdMeSalen)], 3,3′,5,5′-tetra bromo α,α′-di-methyl Salen cobalt (II), [Co(tBrdMeSalen)] and 3,3′,5,5′-tetra iodo α,α′-di-methyl Salen cobalt (II), [Co(tIdMeSalen)] (where Salen is bis(salicylaldehyde)ethylenediamine). The characterization of the complexes was performed by elemental analysis, cyclic voltammetry, UV-Vis, IR and EPR spectroscopies. The study was made in DMF, and pyridine was used for coordination as axial base. The redox potential is influenced by the substituent grafted on aromatic ring and in the azomethynic position and also by the molecules coordinating in axial position (solvent, DMF, or pyridine). The catalytic oxygenation of 2,6-di-tert-butylphenol by these complexes leads to the obtention of benzoquinone and diphenoquinone products. The cobalt (II) complexes form reversible adducts with molecular oxygen. 相似文献