首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The iron(II) compound of formula [Fe(NCS)2(dena)2]n (dena = N,N′-diethylnicotinamide) has been prepared by the reaction between iron(III) thiocyanate and dena in ethanol solution. The complex was characterized by elemental analysis, spectral and magnetic measurements. Single-crystal X-ray diffraction methods show that the complex, crystallizing in the triclinic space group, undergoes a phase transition between 220 K and 230 K, connected with the doubling of cell volume. Crystal structures at 230 K (1a; HT phase) and 150 K (1b; LT phase) are described and a transition mechanism is discussed. In both phases the compound has an extended chain structure, in which the neutral molecule of N,N′-diethylnicotinamide acts as a bridging ligand binding through pyridine N atom to one centre and through amide O atom to the neighbouring Fe centre. The Fe2+ ion has a slightly distorted trans-octahedral environment with FeO2N4 chromophore, and all Fe-O and Fe-N bonds in the typical for high-spin iron(II) compounds range. Variable-temperature magnetic susceptibility data in the temperature range 1.8-300 K show that iron(II) is high-spin S = 2(5T2g) and as a result effects due to zero-field splitting are anticipated at low temperatures. The IR spectrum suggested the coordination of N,N′-diethylnicotinamide to the central atom of iron(II) as a bridging ligand and NCS group as a monodentate ligand.  相似文献   

2.
A new distorted square planar (two CuN2 planes making an angle of ∼43°) copper(II) complex [Cu(L4)] · 0.5EtOH · 0.5MeOH (1) of a deprotonated tetradentate pyridine amide ligand [H2L4 = N,N′-bis(2-pyridinecarboxamide)-2,2′-biphenyl] has been synthesized and structurally characterized. Absorption and EPR spectroscopic properties have also been studied. The E1/2 values (CuII/CuI redox process) of the title complex along with a selected group of structurally characterized CuN4 pyridine amide complexes with systematically varied structural, electronic/steric, and chelate-ring size effects, imposed by the coordinating ligands, have been determined and the observed trend has been rationalized.  相似文献   

3.
Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN3O2S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near −1.0 V vs. SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 × 104-2.3 × 105 M−1. The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen (1O2) as the reactive species.  相似文献   

4.
Nickel(II) complexes of N,N′-dimethyl-N,N′-bis(pyridyl-2yl-methyl)ethylene-diamine (L1), N,N′-dimethyl-N,N′-bis(pyridyl-2-ylmethyl)-1,2-diaminopropane (L2) and N,N′-dimethyl-N,N′-bis(pyridyl-2-ylmethyl)-1,3-diaminopropane (L3) were prepared and their spectroscopic and redox properties studied. The distorted octahedral structure was determined for [NiL3ClCH3OH](ClO4) by using X-ray crystallography. The electronic spectral behavior of the complexes at different pHs was analyzed; it is shown that a new band grew at the expense of the other band intensity in acid media. The redox properties of ligands and their complexes show the peaks of Ni(II) → Ni(III) and Ni(II) → Ni(0) as these were detected at low concentration while Ni(II) → Ni(I) process was detectable clearly at high concentration. Furthermore, the interaction studies of 2-mercaptoethanesulfonic acid as a simulator of coenzyme M reductase (CoM) with NiN4 chromophores are discussed.  相似文献   

5.
A series of mononuclear iron(III) complexes with containing phenolate donor of substituted-salicylaldimine based ligands [Fe(L1)(TCC)] · CH3OH (1), [Fe(L2)(TCC)] · CH3OH (2), [Fe(L3)(TCC)] (3), and [Fe(L4)(TCC)] (4) have been prepared and studied as functional models for catechol dioxygenases (H2TCC = tetrachlorocatechol, or HL1 = N′-(salicylaldimine)-N,N-diethyldiethylenetriamine, HL2 = N′-(5-Br-salicylaldimine)-N,N-diethyldiethylenetriamine, HL3 = N′-(4,6-dimethoxy-salycyl-aldimine)-N,N-diethyl-diethylenetriamine, HL4 = N′-(4-methoxy-salicylaldimine)-N,N-diethyl-diethylenetriamine). They are structural models for inhibitors of enzyme-substrate adducts from the reactions of catechol 1,2-dioxygenases. Complexes 1-4 were characterized by spectroscopic methods and X-ray crystal structural analysis. The coordination sphere of Fe(III) atom of 1-4 is distorted octahedral with N3O3 donor set from the ligand and the substrate TCC occupying cis position, and Fe(III) is in high-spin (S = 5/2) electronic ground state. The in situ prepared iron(III) complexes without TCC, [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)Cl2], and [Fe(L4)Cl2] are reactive towards intradiol cleavage of the 3,5-di-tert-butylcatechol (H2DBC) in the presence of O2 or air. The reaction rate of catechol 1,2-dioxygenase depends on the redox potential and acidity of iron(III) ions in complexes as well as the substituent effect of the ligands. We have identified the reaction products and proposed the mechanism of the reactions of these iron(III) complexes with H2DBC with O2.  相似文献   

6.
Experimental studies of the binding interactions of [CuL(NO3)] and [{CuL′(NO3)}2] (HL = pyridine-2-carbaldehyde thiosemicarbazone, and HL′ = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone) with adenine, guanine, cytosine, thymine and their mononucleotides (dNMP), 2-deoxyadenosine-5′-monophosphate, (dAMP), 2′-deoxyguanosine-5′-monophosphate, (dGMP), 2′-deoxycytidine-5′-monophpsphate (dCMP), and thymidine-5′-monophosphate (dTMP) have been carried out in aqueous solution at pH 6.0, I = 0.1 M (NaClO4) and T = 25 °C. The complexation constants of these compounds, calculated by Hildebrand-Benesi plots for the dye binding, D, ([CuL] or [CuL′]) to the nucleobases or nucleotides (P), have shown two linear stretches in adenine, guanine, dAMP and dGMP. The data were analyzed in terms of formation of 1:1 DP and 1:2 DP2 complexes with increasing purine base or nucleotide content. For cytosine and dCMP only 1:1 complexes have been observed, whereas for thymine and dTMP such complex structures were not observed. The [CuL(Hcyt)](ClO4) cytosine derivative has been isolated and characterized. The crystal structure consists of perchlorate ions and [CuL(Hcyt)]+ monomers attached by hydrogen bond, chelate π−ring and anion-π interactions. The Cu2+ ions bind to the NNS chelating moiety of the thiosemicarbazone ligand and the cytosine N13 site (N3, most common notation) yielding a square-planar geometry. A pseudocoordination to the cytosine O12 site (=O2) can also be considered.  相似文献   

7.
The synthesis and characterization of Pd(II) complexes with the general formula cis-[Pd(L-O,S)2] (HL = N,N-diethyl-N′-benzoylthiourea, N,N-diisobutyl-N′-benzoylthiourea or N,N-dibenzyl-N′-benzoylthiourea) and trans-[PdCl2(HL-S)2] (HL = N,N-diphenyl-N′-benzoylthiourea, N,N-di-n-butyl-N′-benzoylthiourea or N,N-diisopropyl-N′-benzoylthiourea) are reported. These complexes were formed from the reaction between PdCl2 and N,N-di(alky/aryl)-N′-benzoylthiourea in acetonitrile with the formulation dependent on the nature of HL. The new Pd(II) complexes have been characterized by analytical and spectral (FT-IR, UV-Vis, 1H NMR and 13C NMR, Mass) techniques. The molecular structures of two of the complexes (1 and 5) have been conformed by X-ray crystallography. Complex 1 shows cytotoxicity against human breast cancer cells.  相似文献   

8.
To compare the cytotoxicities and the DNA-binding properties in tetranuclear complexes with different bridging ligands, two tetracopper(II) complexes with formulae of [Cu4(oxbe)2Cl2(bpy)2]·4H2O (1) and [Cu4(oxbm)2Cl2(bpy)2]·2H2O (2) were synthesized, where H3oxbe and H3oxbm stand for N-benzoato-N′-(2-aminoethyl)oxamide and N-benzoato-N′-(1,2-propanediamine)oxamide, respectively, and bpy is 2,2′-bipyridine. Complex 1 was characterized by elemental analyses, IR and electronic spectra and single-crystal X-ray diffraction. The crystal structure reveals the presence of the circular tetranuclear copper(II) cations which are assembled by a pair of cis-oxamido-bridged dinuclear copper(II) units through carboxyl bridges. The crystal structure of complex 2 has been reported in our previous paper. However, the bioactivities were not studied. Cytotoxicities experiments reveal that both the two complexes exhibit cytotoxic effects against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549, and complex 1 has the better activities than those of complex 2. The results of the interactions between the two complexes and herring sperm DNA (HS-DNA) suggest that the two complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 3.93 × 104 M−1 (1) and 2.48 × 104 M−1 (2). These results indicated that the bridging ligands may play an important role in the cytotoxicities and the DNA-binding properties of tetranuclear complexes.  相似文献   

9.
Reactions of 2-(arylazo)aniline, HL [H represents the dissociable protons upon orthometallation and HL is p-RC6H4N = NC6H4-NH2; R = H for HL1; CH3 for HL2 and Cl for HL3] with Ru(R1-tpy)Cl3 (where R1-tpy is 4′-(R1)-2,2′,6′′,2′′-terpyridine and R1 = H or 4-N,N-dimethylaminophenyl or 4-methylphenyl) afford a group of complexes of type [Ru(L)(R1-tpy)]·ClO4 each of which contains C,N,N coordinated L as a tridentate ligand along with a terpyridine. Structure of one such complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, display characteristic 1H NMR signals and intense dπ(RuII) → π∗(tpy) MLCT transitions in the visible region. Cyclic voltammetric studies on [Ru(L)(R1-tpy)]·ClO4 complexes show Ru(II)-Ru(III) oxidation within 0.63-0.67 V versus SCE.  相似文献   

10.
Two new binuclear copper complexes, [Cu2(oxpn)(bpy)(pic)(H2O)](pic) (1) and [Cu2(oxpn)(Me2bpy)(pic)](pic) (2) [H2oxpn = N,N′-bis(3-aminopropyl)oxamide; Hpic = 2,4,6-trinitrophenol; bpy = 2,2′-bipyridine; Me2bpy = 4,4′-dimethyl-2,2′-bipyridine], have been synthesized and characterized by elemental analyses, conductivity measurements, IR, UV-visible spectroscopy and single crystal X-ray analyses. Both complexes have similar molecular structures. In complex 1, the central two Cu(II) atoms are bridged by cis-oxpn2− with the Cu1-Cu2 separation of 5.221 Å and the polyhedron of each copper atom is a square-pyramid. Similarly, complex 2 is a cis-oxpn2−-bridged binuclear complex with the Cu1-Cu2 separation of 5.196 Å. Cu1(II) central atom situated in a tetrahedral geometry is four-coordinated and Cu(II) atom situated in a square-pyramidal geometry is five-coordinated. Hydrogen bonding interactions and π-π stacking interactions link the binuclear copper complex 1 or 2 into a 2D infinite network. The antibacterial assays indicate that the two complexes showed better activities than their ligands. The interactions of the two binuclear complexes with herring sperm DNA (HS-DNA) have been studied by UV absorption titration, fluorescence titration and viscosity measurements. The results suggest that the two binuclear complexes bind to HS-DNA via an intercalative mode.  相似文献   

11.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   

12.
Adduct formation between R2SnCl2 (R = methyl and n-butyl) as acceptors, and nickel(II) complexes of tetradentate Schiff base ligands ([NiL]) where L = [3-methoxysalen, N,N′-bis(3-methoxysalicylidene)ethylenediamine], [4-methoxysalen, N,N′-bis(4-methoxysalicylidene)ethylenediamine], [5-methoxysalen, N,N′-bis(5-methoxysalicylidene)ethylenediamine], [salen, N,N′-bis(salicylaldehydo)ethylenediamine], [5-chlorosalen, N,N′-bis(5-chlorosalicylidene)ethylenediamine] and [5-bromosalen, N,N′-bis(5-bromosalicylidene)ethylenediamine] as donors have been investigated in chloroform as a solvent by means of UV-Vis spectrophotometeric analysis. Adducts have been characterized by 1H NMR, IR and electronic spectroscopy. The formation constants and the thermodynamic free energies were measured using UV-Vis spectrophotometry titration for 1:1 adduct formation at various temperatures (T = 278-308 K). The trend of the adduct formation of the nickel Schiff base complexes with a given tin acceptor decreases as follow:
Ni(3-MeOSalen)>Ni(5-MeOSalen)>Ni(4-MeOSalen)  相似文献   

13.
This work summarizes the results of our studies on the structural, spectral and redox properties of a mononuclear zinc(II) complex with the new H2L ligand (H2L = N,N′,N,N′-bis[(2-hydroxy-3,5-di-tert-butylbenzyl)(2-pyridylmethyl)]-ethylene diamine). The crystal structure of the complex [ZnII(HL)] · ClO4 (1) was determined by X-ray crystallographic analysis. The structure of this complex consists of a discrete mononuclear cation [ZnII(HL)]+, in a strongly distorted geometry with a slight tendency toward a distorted square pyramidal geometry, as reflected by the structural index parameter τ of 0.44. The zinc(II) cation is coordinated to one oxygen and four nitrogen atoms: the pyridine nitrogen atoms (N22 and N32), tertiary amine nitrogen atoms (N1 and N4) and phenolate oxygen atom (O10). 1H and 13C NMR spectral data show a rigid solution structure for 1 in agreement with X-ray structure. Potentiometric studies of complex 1 were also performed and revealed three titratable protons which are attributed to the protonation/deprotonation of two phenol groups (p[K]a1 = 4.04 and p[K]a3 = 11.34) and dissociation of a metal-bound water molecule (p[K]a2 = 7.8). The phenolate groups in complex 1 are suitably protected by bulky substituents (tert-butyl) in the ortho- and para-positions, which through electrochemical oxidation generate a one-electron oxidized phenoxyl species in solution. This radical species was characterized by UV-Vis, EPR and electrochemical studies. The Zn(II)-phenoxyl radical species is of bioinorganic relevance, since its spectroscopic, redox and reactivity properties can be used to establish the role of phenoxyl radicals in biological and catalytical systems.  相似文献   

14.
Two ruthenium nitrosyl bis-pyridyl/biscarboxamido compounds, [Ru(NO)(bpp)Cl · 2H2O] [bpp = N,N′-bis(2-pyridinecarboxamide)-1,3-propane dianion] and [Ru(NO)(bpe)Cl · 2H2O] [bpe = N,N′-(bis-2-pyridinecarboxamide)-1,2-ethane dianion] have been characterized by 1H NMR, 13C{1H} NMR, and IR spectroscopies, electrospray ionizaton mass spectrometry, and X-ray crystallography.  相似文献   

15.
In this work, the interaction between the guanine-rich single-strand oligomer AG3(T2AG3)3 quadruplex and two Ru(II) complexes, [Ru(L1)(dppz)2](PF6)4 (1) and [Ru(L2)(dppz)2](PF6)4 (2) (L1 = 5,5′-di(1-(trimethylammonio)methyl)-2,2′-dipyridyl cation, L2 = 5,5′-di(1-(triethylammonio)methyl)-2,2′-dipyridyl cation, dppz = dipyrido[3,2-a:2′,3′-c] phenazine), has been studied by UV-Visible, fluorescence, DNA melting, and circular dichroism in K+ buffer. The two complexes after binding to G-quadruplex have shown different DNA stability and fluorescence enhancement. The results show that both complexes can induce the stabilization of quadruplex DNA. ΔTm values of complexes 1 and 2 at [Ru]/[DNA] ratio of 1:1 were 9.4 and 7.0, respectively. Binding stoichiometry along with the quadruplex was investigated through a luminescence-based Job plot. The major inflection points for complexes 1 and 2 were 0.49 and 0.46, respectively. The data were consistent with the binding mode at a [quadruplex]/[complex] ratio of 1:1. In addition, the conformation of G-quadruplex was not changed by the complexes at the high ionic strength of K+ buffer.  相似文献   

16.
Two new mononuclear bis(oxamato) complexes with the formula [nBu4N]2[M(nabo)] M = Ni (4), Cu (5), with nabo = 2,3-naphthalene-bis(oxamato) have been synthesized as precursors for trinuclear oxamato-bridged transition metal complexes. Starting from 5 the homo-trinuclear complex [Cu3(nabo)(pmdta)2(BF4)](BF4) · MeCN · Et2O (7), with pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, has been prepared. The central N,N′-2,3-naphthalene bridge of 7 is so far the most extended π-conjugated bridge of trinuclear bis(oxamato) type transition metal complexes. The goal of this work was to verify the N,N′-2,3-naphthalene bridge of 7 on its magnetic properties in comparison to the N,N′-o-phenylene bridge of the related homo-trinuclear complex [Cu3(opba)(pmdta)2(NO3)](NO3) · 2MeCN (6) (opba = o-phenylene-bis(oxamato)). The crystal structures of 4-7 were solved. The magnetic properties of 6 and 7 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter, values of −89 cm−1 (6) and −113 cm−1 (7) were obtained. The different J values are discussed based on the crystal structures of 6 and 7.  相似文献   

17.
The copper(II) complex of the acyclic EBTA ligand (H4EBTA = 1,2-bis(2-aminoethoxy)benzene-N,N,N′,N′-tetraacetic acid) has been prepared and characterized by X-ray analysis. The two copper ions of the dinuclear unit present the same distorted octahedral coordination polyhedra. The EBTA ligand is shared between two copper coordination centres, with the formation of centrosymmetric dimers, which are linked in a supramolecular tridimensional structure via additional interactions through the coordinated waters molecules with adjacent carboxylic oxygen atoms. The stability and protonation constants of EBTA with Cu(II) and Zn(II) ions indicate a higher stability of these complexes with respect to the corresponding complexes with the more flexible EGTA ligand (H4EGTA = ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid). On the other hand, the lower stability of [Gd(EBTA)] than [Gd(EGTA)] results in a decreased overall selectivity (lower Ksel) of EBTA towards Gd(III) and suggests that this complex may undergoes transmetallation reactions under physiological conditions.  相似文献   

18.
A family of four new phenoxo-bridged binuclear manganese(III) complexes of the general formula, [Mn(L)(X)]2 where L = [N,N′-bis(salicylidene)]propane-1,2-diamine and X = salicylaldehyde anion (sal) (1); NCS (2); NCO (3) and [Mn(L′)(N3)]2·2C2H5OH (4) where L′ = [N,N′-bis(2-hydroxyacetophenylidene)]propane-1,2-diamine has been prepared. The syntheses have been achieved by reacting manganese perchlorate with 1,2-diaminopropane and salicylaldehyde (or 2-hydroxyacetophenone for 4) or along with the respective pseudohalides so that the tetradentate Schiff base H2L or H2L′ is obtained in situ to bind the Mn(III) ion. The complexes have been characterized by IR spectroscopy, elemental analysis, crystal structure analysis and variable-temperature magnetic susceptibility measurements. The single crystal X-ray diffraction studies show that the compounds are isostructural containing dimeric Mn(III) units with bridging phenolate oxygen atoms. Low temperature magnetic studies indicate that the complexes 1-3 exhibit intradimer ferromagnetic exchange as well as single-molecule magnet (SMM) behavior while complex 4 is found to undergo an intradimer antiferromagnetic coupling.  相似文献   

19.
Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)2 · 6H2O with N,N-bis(2-pyridylmethyl)amine (L1); N-(2-pyridylmethyl)-N′,N′-dimethylethylenediamine (L2); and N-(2-pyridylmethyl)-N′,N′-diethylethylenediamine (L3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L1)(N3)(ClO4) (1), the end-to-end diazido-bridged Cu2(L2)2(μ-1,3-N3)2(ClO4)2 (2) and the single azido-bridged (μ-1,3-) 1D chain [Cu(L3)(μ-1,3-N3)]n(ClO4)n (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = −3.43 cm−1 and R = 1 × 10−5. The magnetic data for 3 were fitted to Baker’s expression for S = 1/2 and the parameters obtained were J = 1.6 cm−1 and R = 3.2 × 10−4. Crystal data are as follows. Cu(L1)(N3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Å; β = 102.960(10)°; Z = 4. Cu(L2)(μ-N3)(ClO4): Chemical formula, C10H17ClN6O4Cu: crystal system, monoclinic; space group, P21/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Å; β = 102.360(10)°; Z = 4. [Cu(L3)(μ-N3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Å; β = 103.405(10)°; Z = 4.  相似文献   

20.
The DNA binding and in vitro cytotoxicity of the dinuclear Ir(III) polypyridyl complexes [{(η5-C5Me5)Ir(dppz)}2(μ-pyz)](CF3SO3)41 and [{(η5-C5Me5)Ir(pp)}2(μ-4,4′-bpy)](CF3SO3)42-4 (pp = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz), benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine (dppn)) with the rigid bridging ligands pyrazine (pyz) or 4,4′-bipyridine (4,4′-bpy) have been studied. Stable intercalative binding into CT DNA (calf thymus DNA) is indicated for the dppz complexes 1 and 3 by induced negative CD bands at about 300 nm and large viscosity increases, with the individual measurements being in accordance with intrastrand bis-intercalation for 3 and mono-intercalation for 1. The observed interruption of specific interresidue NOE cross peaks from the relevant nucleobase H6/H8 protons to the sugar H2′/H2″ protons of the preceding nucleotide is in accordance with bis-intercalation of complex 3 between the C3G18 and G4C17 base pairs and the T5A16 and A6T15 base pairs of the decanucleotide d(5′-CGCGTAGGCC-3′). Complexes 1 and 3 exhibit a greatly improved uptake by HT-29 (colon carcinoma) cells and significantly improved in vitro IC50 values of 1.8 ± 0.1 and 3.8 ± 0.1 μM towards this cell line in comparison to the mononuclear complex [(η5-C5Me5)IrCl(dppz)](CF3SO3) (IC50 = 7.4 ± 0.9 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号