首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DFT calculations with a variety of exchange-correlation functionals, including PW91, OLYP, TPSSh, B3LYP and B3LYP*, have been carried out on the low-energy spin states of chloroiron(III) porphyrin and four aryliron(III) porphyrins, viz. FeIII(P)Ph (S = 1/2), FeIII(P)C6F5 (S = 5/2), FeIII(P)(3,4,5-C6F3H2) (S = 1/2), FeIII(P)(2,4,6-C6F3H2) (S = 5/2), where the expected spin states have been indicated within parentheses. Qualitatively, OLYP reproduces all the expected ground spin states. B3LYP appears to have some difficulty yielding the observed sextet ground states. B3LYP*, TPSSh and PW91 all fail to reproduce the sextet ground states, the latter two by rather large margins of energy. As far as this study is concerned, the overall performance of the functionals appears to be OLYP/OPBE > B3LYP > B3LYP* >> TPSSh > PW91/BLYP/BP86/TPSS.  相似文献   

2.
This work reports density functional computations of metal-substituted models of biological [Fe3S4] clusters in oxidation states [MFe2S4](+/0/-1) (M=Mn, Fe, Co, Ni, Cu, Zn, and Mo). Geometry optimization with a dielectric screening model is shown to provide a substantial improvement in structure, compared to earlier used standard procedures. The error for average Fe-S bonds decreased from 0.038A to 0.016A with this procedure. Four density functionals were compared, B3LYP, BP86, TPSS, and TPSSh. B3LYP and to a lesser extent TPSSh energies were inconsistent with experiment for the oxidized [Fe3S4]+ cluster. BP86 (and to a slightly lesser extent TPSS) was within expected theoretical and experimental uncertainties for all oxidation states, the only qualitative error being 5kJ/mol in favor of the M(S)=3/2 configuration for the [Fe3S4]+ cluster, so BP86 was used for quantitative results. Computed reorganization energies and reduction potentials point directly towards the [Fe3S4] cluster as the superior choice of electron carrier, with the [ZnFe2S4] cluster a close second. In addition, partially and fully Mo-substituted clusters were investigated and found to have very low reorganization energies but too negative reduction potentials. The results provide a direct rationale why any substitution weakens the cluster as an electron carrier, and thus why the [Fe3S4] composition is optimal in the biological clusters.  相似文献   

3.
The present work assessed several exchange-correlation functionals (including GGA, meta-GGA and hybrid functionals), in combination with a variety of basis sets and effective core potentials (ECP) for their ability to predict the ground spin state of Mn(III) meso-tetraphenylporphyrin chloride complex, labeled Mn(III)TPPCl, for which experimental data support the quintet high spin state. Geometry optimization of Mn(III)TPPCl was performed for three possible spin states (singlet state, LS; triplet state, IS; and quintet state, HS) at the TPSSh level using the LANL2DZ ECP for Mn and the 6-311G(d) basis set for C, N, Cl and H. Afterwards, single-point energy calculations were conducted by applying 18 exchange-correlation functionals (BLYP, B3LYP, PW91, BPW91, BP86, OLYP, OPBE, OPW91, O3LYP, PBE0, PBEh1PBE, HSEH1PBE, TPSS, TPSSh, M06 L, M06, M062X and M06HF). The influence of the basis set for the metal center was assessed using a smaller group of functionals and varying between the Pople basis set 6-31G(d), its newer formulation m6-31G(d) and the larger Def2-QZVP basis set. All functionals in combination with Pople basis sets predict the quintet state as the ground spin state. In addition, the BLYP, BP86, BPW91, PW91, PBEh1PBE, TPSS and TPSSh functionals predicted the IS lying at most ~60 kJ mol?1 above the HS, which agrees with the reference data. Results including Def2-QZVP basis set were inconsistent, since only BLYP and B3LYP predict HS as the ground spin state. The recommended methodology for the treatment of such systems seems to be exchange-correlations functionals with few or none Hartree-Fock exchange and modest size basis sets.
Graphical Abstract MnTPPCl molecule and the energy ordering of its spin states assessed by 18 functionals
  相似文献   

4.
5.
The oxidation of sulfite to sulfate by two different models of the active site of sulfite oxidase has been studied. Both protonated and deprotonated substrates were tested. Geometries were optimized with density functional theory (TPSS/def2-SV(P)) and energies were calculated either with hybrid functionals and large basis sets (B3LYP/def2-TZVPD) including corrections for dispersion, solvation, and entropy, or with coupled-cluster theory (LCCSD(T0)) extrapolated toward a complete basis set. Three suggested reaction mechanisms have been compared and the results show that the lowest barriers are obtained for a mechanism where the substrate attacks a Mo-bound oxo ligand, directly forming a Mo-bound sulfate complex, which then dissociates into the products. Such a mechanism is more favorable than mechanisms involving a Mo–sulfite complex with the substrate coordinating either by the S or O atom. The activation energy is dominated by the Coulomb repulsion between the Mo complex and the substrate, which both have a negative charge of ?1 or ?2.  相似文献   

6.
We report the results of the performance of 20 exchange–correlation functionals of density functional theory (DFT) in the structure (Metal–Oxygen bond length) and energetical properties (bond dissociation energy, adiabatic ionisation energy, and adiabatic electron affinity) of twelve metal monoxides (M–O, M=Al, Si, Sc–Zn). The calculated results show that the selected DFT functionals have the ability to reproduce the M–O bond length with a mean deviation of 0.01–0.05 Å, the energy values are reproduced with a mean deviation of 0.20–1.00?eV. In general, the functionals with significant HF exchange show decent performance in the calculation of bond length and harmonic vibrational frequency. These functionals show poor performance in energetics. Our calculated results show that the M06-L, B3LYP, and TPSSh functionals give good performance in both structure and energetical properties of metal monoxides. These functionals are recommended for the studies of structure and energetics in metal oxide systems. Further, our studies indicate that M06-L can be used for the studies in larger molecular systems. Among the 20 DFT functionals, the recently developed N12 functional gives poor performance in the studies of metal monoxides. Hence this functional is not recommended for the studies of structure and energetics in metal oxide systems.  相似文献   

7.
Neto AC  Jorge FE 《Chirality》2007,19(1):67-73
Density function theory calculations of frequency dependent optical rotations ([alpha]omega) for 30 rigid chiral molecules are reported. Calculations have been carried out at the sodium D line frequency, using the augmented double zeta valence quality plus polarization functions (ADZP) basis set and the BP86 nonhybrid and B3LYP hybrid functionals. Gauge-invariant atomic orbitals were used to guarantee origin-independent values of [alpha]D. Comparison between corresponding results obtained with nonhybrid and hybrid functionals as well as with theoretical optical rotations reported in the literature is done. Excited electronic states of three molecules are also discussed in light of circular dichroism spectra and B3LYP and BP86 calculated excitation energies and rotatory strengths. One verifies that the B3LYP/ADZP results are in better agreement with experiment.  相似文献   

8.
Luo G  Strong PJ  Wang H  Ni W  Shi W 《Bioresource technology》2011,102(13):6990-6994
The kinetics of water hyacinth decomposition using pyrolysis and hydrothermal treatment was compared. With pyrolysis, initial vaporization occurred at 453 K as determined by thermogravimetric analysis, while initial solubilisation occurred at 433 K with subcritical hydrothermal treatment. The “kinetic triplet” was determined for the ranges of 423-483 K (range I) and 473-553 K (range II) using the Coats-Redfern method for both treatments. The calculated activation energies for ranges I and II were 110 and 116 kJ/mol for conventional pyrolysis and 145 and 90 kJ/mol for hydrothermal treatment. The similar activation energies for the two temperature ranges observed for pyrolysis implied that only hemicellulose decomposition occurred. For hydrothermal treatment, both hemicellulose and cellulose decomposition occurred in temperature range II, in which a notable lower activation energy was observed. This implied hydrothermal treatment was more suitable for conversion lignocellulosic biomass under these conditions.  相似文献   

9.
The bis(μ-oxo)/μ-η22-peroxo equilibria for seven supported Cu2O2 cores were studied with different hybrid and nonhybrid density functional theory models, namely, BLYP, mPWPW, TPSS, TPSSh, B3LYP, mPW1PW, and MPW1K. Supporting ligands 3,3′-iminobis(N,N-dimethylpropylamine), N,N,N′,N′,N″-pentamethyldipropylenetriamine, N-[2-(pyridin-2-yl)ethyl]-N,N,N′-trimethylpropane-1,3-diamine, bis[2-(2-pyridin-2-yl)ethyl]methylamine, bis[2-(4-methoxy-2-pyridin-2-yl)ethyl]methylamine, bis[2-(4-N,N-dimethylamino-2-pyridin-2-yl)ethyl]methylamine, and 1,4,7-triisopropyl-1,4,7-triazacyclononane were chosen on the basis of the availability of experimental data for comparison. Density functionals were examined with respect to their ability accurately to reproduce experimental properties, including, in particular, geometries and relative energies for the bis(μ-oxo) and side-on peroxo forms. While geometries from both hybrid and nonhybrid functionals were in good agreement with experiment, the incorporation of Hartree–Fock (HF) exchange in hybrid density functionals was found to have a large, degrading effect on predicted relative isomer energies. Specifically, hybrid functionals predicted the μ-η22-peroxo isomer to be too stable by roughly 5–10 kcal mol−1 for each 10% of HF exchange incorporated into the model. Continuum solvation calculations predict electrostatic effects to favor bis(μ-oxo) isomers by 1–4 kcal mol−1 depending on ligand size, with larger ligands having smaller differential solvation effects. Analysis of computed molecular partition functions suggests that nonzero measured entropies of isomerization are likely to be primarily associated with interactions between molecular solutes and their first solvation shell. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Hydrogen cyanide (HCN) and its tautomer hydrogen isocyanide (HNC) are relevant for extraterrestrial chemistry and possible relation to the origin of biomolecules. Several processes and reactions involving these molecules depend on their intermolecular interactions that can lead to aggregates and liquids especially due to the hydrogen bonds. It is thus important to comprehend, to describe, and to quantify their hydrogen bonds, mainly their nature and the cooperativity effects. A systematic study of all linear complexes up to pentamers of HCN and HNC is presented. CCSD(T)/CBS energy calculations, with and without basis set superposition error (BSSE) corrections for energies and geometries, provided a suitable set of benchmarks. Approximated methods based on the density functional theory (DFT) such as BP86, PBE, TPSS, B3LYP, CAM-B3LYP with and without dispersion corrections and long-range corrections, were assessed to describe the interaction energies and cooperativity effects. These assessments are relevant to select DFT functionals for liquid simulations. Energy decomposition analysis was performed at the PBE/STO-TZ2P level and provided insights into the nature of the hydrogen bonds, which are dominated by the electrostatic component. In addition, several linear relationships between the various energy components and the interaction energy were obtained. The cooperativity energy was also found to be practically linear with respect to the interaction energy, which may be relevant for designing and/or correcting empirical force fields.
Graphical Abstract Hydrogen bonds in HCN/HNC oligomeric complexes?
  相似文献   

11.
Hyperthermia is a promising treatment for carcinoma cells. The thermal injuries of two hepatoma carcinoma cell lines with the identical cytological grade, HepG2 and Hep3B cell lines, were investigated systematically in the present study. The homemade heating stage was used to provide a constant temperature between 40 and 70 °C for thermal treatment. When the cells were exposed to temperatures ranging from 40 to 45 °C, Hep3B cells had a lower thermotolerance than the HepG2 cells; however, the survival rate of these two cell lines was still high. The differences in thermotolerance between HepG2 and Hep3B cells were more significant at the range of 50–55 °C than those at lower-level temperatures of 40–45 °C. Furthermore, the viability of the cells was less than 10% when they were exposed to a supraphysiological temperature of 60 °C for 5 min; these cell lines suffered from injury saturation under that thermal treatment. The statistical analysis also concluded that Hep3B cells are more susceptible to heat stress than are the HepG2 cells when subjected to the thermal treatment applied in this work, the exception being when thermal injury saturation occurred. The kinematic parameters of the activation energy and frequency factor for HepG2 and Hep3B cells were also quantitatively determined herein. The activation energies (ΔE) for HepG2 and Hep3B cells were 170.17 and 152.44 kJ/mol, respectively. Furthermore, the frequency factors (A) for HepG2 and Hep3B cells were 4.11×1024 and 1.07×1022 s−1, respectively.  相似文献   

12.
The effect of microsolvation on zwitterionic glycine, considering both (-NH3(+)) as proton donor and (-COO(-)) as proton acceptor at correlated ab initio (MP2) level and density functional methods (B3LYP, PW91, MPW1PW91 and PBE) using 6-311++G** basis set has been reported. DFT methods have been employed so as to compare the performance/quality of different gradient-corrected correlation functionals (PW91, PBE), hybrid functionals (B3LYP, MPW1PW91) and to predict the near quantitative structural and vibrational properties, at reduced computational cost. B3LYP method outperforms among the different DFT methods for the computed hydrogen bond distances and found closer to the value obtained by correlated MP2 level, whereas MPW1PW91 and PBE methods shows very similar values but approximately 0.03 A less, compared to B3LYP method. MP2 calculation and single point CCSD(T)//MP2 calculation have been considered to decompose the interaction energy, including corrections for basis set superposition error (BSSE). Moreover, charge distribution analysis has also been carried out to understand the long raised questions, how and why the two body energies have significant contribution to the total binding energy.  相似文献   

13.
Density functional theory (DFT) calculations have been performed for understanding the linkage isomerism of [RuII/III(NH3)5(dmso)]2+/3+ (dmso = dimethylsulfoxide) from a theoretical point of view. In particular, we focus on the interchange between O-bonded and S-bonded structures of the dmso ligand by oxidation/reduction. We have examined five different exchange-correlation functionals (SVWN, BP86, mPWPW91, B3PW91, and B3LYP) in our DFT calculations and found that the relative stabilities of the O-bonded and S-bonded structures are largely dependent on the functional employed. From detailed analyses of atomic charge distributions, it has been found that the calculated atomic charges on the central metal ions are strongly correlated with the relative energies. We also studied the effect of solvation on the linkage isomerism using continuum solvation models.  相似文献   

14.
ABSTRACT

In this work, with Ni (110) as a model catalyst surface and CO2 as an adsorbate, a performance study of Density Functional Theory methods (functionals) is performed. CO being a possible intermediate in CO2 conversion reactions, binding energies of both, CO2 and CO, are calculated on the Ni surface and are compared with experimental data. OptPBE-vdW functional correctly predicts CO2 binding energy on Ni (?62?kJ/mol), whereas CO binding energy is correctly predicted by the rPBE-vdW functional (?138?kJ/mol). The difference in computed adsorption energies by different functionals is attributed to the calculation of gas phase CO2. Three alternate reaction systems based on a different number of C=O double bonds present in the gas phase molecule are considered to replace CO2. The error in computed adsorption energy is directly proportional to the number of C=O double bonds present in the gas phase molecule. Additionally, both functionals predict similar carbon–oxygen activation barrier (40?kJ/mol) and equivalent C1s shifts for probe species (?2.6?eV for CCH3 and +1.5?eV CO3?), with respect to adsorbed CO2. Thus, by including a correction factor of 28?kJ/mol for the computed CO2 gas phase energy, we suggest using rPBE-vdW functional to investigate CO2 conversion reactions on different metals.  相似文献   

15.
We report the structural properties, infrared (IR) and Raman spectra, dipole moment, polarisability, hardness and chemical potential of the trans and cis configurations of 4-hydroxyazobenzene calculated using the B3LYP functionals. All calculations were performed with the following basis sets: 6–31G, 6–31++G, 6–31G(d,p), 6–31++G(d,p), 6–31G(2d,2p), 6–31++G(2d,2p) and 6–311++G(2d,2p). We observed that 6–31++G(d,p) gives similar results to 6–311++G(2d,2p). Consequently, SVWN and PW91 methods were also used in association with 6–31++G(d,p) to test the influence of the different models of exchange and correlation functionals. A planar structure was obtained for all the optimised trans configuration structures. In both isomers, the presence of the hydroxyl group leads to an asymmetry in certain structural parameters. From these results, two IR or Raman active frequencies can be used to easily distinguish trans and cis configurations. The trans configuration was found to be more stable than the cis configuration by 67 ± 2 kJ mol−1 at 0 K. The difference of the dipole moment between trans and cis for 4-hydroxyazobenzene was found to be lower than for trans and cis azobenzene.  相似文献   

16.
The computational prediction of gas phase enthalpy (neutral substrates) and aqueous free energy (anion substrates) changes has been evaluated for the oxygen atom transfer reaction X + 1/2O2 → XO. Several density functionals (SVWN, BP86, B3LYP) at double- and triple-ζ levels were surveyed, along with one composite ab initio method (G3(MP2)). Results are presented for extensive main group test sets for which experimental thermochemistry is available. In addition, several minimal reaction couples of the type [MIVOL2]/[MVIO2L2] (M = Mo, W) have been examined. Overall, the results suggest a computational approach to the energetics of oxo transfer is feasible, potentially affording an expanded oxo transfer reactivity scale.  相似文献   

17.
We used a rapid scanning stop-flow technique to study the kinetics of reduction of cytochrome P450 3A4 (CYP3A4) by the flavin domain of cytochrome P450-BM3 (BMR), which was shown to form a stoichiometric complex (KD = 0.48 μM) with CYP3A4. In the absence of substrates only about 50% of CYP3A4 was able to accept electrons from BMR. Whereas the high-spin fraction was completely reducible, the reducibility of the low-spin fraction did not exceed 42%. Among four substrates tested (testosterone, 1-pyrenebutanol, bromocriptine, or α-naphthoflavone (ANF)) only ANF is capable of increasing the reducibility of the low-spin fraction to 75%. Our results demonstrate that the pool of CYP3A4 is heterogeneous, and not all P450 is competent for electron transfer in the complex with reductase. The increase in the reducibility of the enzyme in the presence of ANF may represent an important element of the mechanism of action of this activator.  相似文献   

18.
The influence of ring size on the photobehaviour of condensed 1,4-naphthoquinone systems, such as pyrano- and furano-derivatives (1 and 2, respectively) has been investigated. The absorption spectra for both families of naphthoquinones reveal clear differences; in the case of 2 they extend to longer wavelengths. A solvatochromic red shift in polar solvents is consistent with the π,π* character of the S(0)→ S(1) electronic transition in all cases. Theoretical (B3LYP) analysis of the HOMO and LUMO Kohn-Sham molecular orbitals of the S(0) state indicates that they are π and π* in nature, consistent with the experimental observation. A systematic study on the efficiency of singlet oxygen generation by these 1,4-naphthoquinones is presented, and values larger than 0.7 were found in every case. In accordance with these results, laser flash photolysis of deoxygenated acetonitrile solutions led to the formation of detectable triplet transient species with absorptions at 390 and 450 nm (1) and at 370 nm (2), with φ(ISC) close to 1. Additionally, the calculated energies for the T(1) states relative to the S(0) states at UB3LYP/6-311++G** are ca. 47 kcal mol(-1) for 1 and 43 kcal mol(-1) for 2. A comparison of the geometrical parameters for the S(0) and T(1) states reveals a marked difference with respect to the arrangement of the exocyclic phenyl ring whilst a comparison of electronic parameters revealed the change from a quinone structure to a di-dehydroquinone diradical structure.  相似文献   

19.
Compounds FeIII(3-CH3O-qsal)2PF6 · nH2O (n = 0, 2) (1, 1 · 2H2O) were synthesized and characterized: the structure of 1 and the magnetic properties of both compounds were determined. Compound 1 · 2H2O presents properties characteristic of high-spin Fe(III), while 1 presents properties of low-spin Fe(III) with an onset of a gradual spin crossover at ca. 300 K.  相似文献   

20.
Geometry optimization, at the B3LYP/6-311++G** level of theory, was carried out on 4C1 and 1C4 chairs, (3,O)B and B(3,O) boats, and skew-boat conformations of alpha- and beta-D-glucopyranose. Similar calculations on 1,5-anhydro-D-glucitol allowed examination of the effect of removal of the 1-hydroxy group on the energy preference of the hydroxymethyl rotamers. Stable minimum energy boat conformers of glucose were found, as were stable skew boats, all having energies ranging from approximately 4-15 kcal/mol above the global energy 4C1 chair conformation. The 1C4 chair electronic energies were approximately 5-10 kcal/mol higher than the 4C1 chair, with the 1C4 alpha-anomers being lower in energy than the beta-anomers. Zero-point energy, enthalpy, entropy, and relative Gibbs free energies are reported at the harmonic level of theory. The alpha-anomer 4C1 chair conformations were found to be approximately 1 kcal/mol lower in electronic energy than the beta-anomers. The hydroxymethyl gt conformation was of lowest electronic energy for both the alpha- and beta-anomers. The glucose alpha/beta anomer ratio calculated from the relative free energies is 63/37%. From a numerical Hessian calculation, the tg conformations were found to be approximately 0.4-0.7 kcal/mol higher in relative free energy than the gg or gt conformers. Transition-state barriers to rotation about the C-5-C-6 bond were calculated for each glucose anomer with resulting barriers to rotation of approximately 3.7-5.8 kcal/mol. No energy barrier was found for the path between the alpha-gt and alpha-gg B(3,O) boat forms and the equivalent 4C1 chair conformations. The alpha-tg conformation has an energy minimum in the 1S3 twist form. Other boat and skew-boat forms are described. The beta-anomer boats retained their starting conformations, with the exception of the beta-tg-(3,O)B boat that moved to a skew form upon optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号