首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to develop novel gold-based chemotherapies, gold(III) coordination complexes possessing a series of di-2-pyridyl ligands were targeted as synthetic products. It was found that di-2-pyridyl ligands linked by different groups exhibited varying coordination to gold(III). Di-2-pyridyl sulfide (DPS) exhibited bidentate binding to gold(III), and formed a complex ion with a gold tetrachloride counter ion {[(DPS)AuCl2]AuCl4; compound 3}; di-2-pyridyl ether (DPO) formed a neutral monodentate coordination complex with gold(III) {[(DPO)(AuCl3)]; compound 4}; and attempts to make a gold(III) complex with di-2-pyridyl ketone (DPK) were unsuccessful, as a complex ion possessing the protonated ligand and a gold tetrachloride anion was isolated {[HDPK][AuCl4]; compound 5}. Compounds 3-5 were structurally characterized using X-ray crystallography, which confirmed the different coordination environments around the gold(III) metal centers.  相似文献   

2.
A new ligand based on a ruthenocene moiety appended by a diyrromethene (Rc-dpm) was synthesized. Two copper complexes, Cu(Rc-dpm)2 (3) and Cu(Rc-dpm)acac (4), and one cobalt complex, Co(Rc-dpm)3, 5, were prepared from the ligand. These complexes were characterized by a combination of UV-Vis spectroscopy, elemental analysis, and X-ray crystallography. Copper(II) complex 3 was found to be coordinated by two dipyrromethene ligands in a distorted square planar environment around the copper while complex 4 had one dipyrromethene ligand and an acac coordinated in a nearly idealized square planar copper geometry. The cobalt(III) complex 5 has an octahedral geometry around the cobalt via the coordination of three dipyyromethene ligands.  相似文献   

3.
Condensation of tetraphenylporphyrin-2,3-dione with 1,10-phenanthroline-5,6-diamine provided porphyrinphenanthroline (2) as the desired ligand. Metallation of the porphyrinic site of 2 with CoCl2, NiCl2, ZnCl2 and CuCl2 afforded the corresponding metal complexes [Co(2)] (8a), [Ni(2)] (8b), [Zn(2)] (8c) and [Cu(2)] (8d), respectively. Subsequent reactions of these metalloporphyrins with [(COD)PdCl2] yielded the corresponding bimetallic complexes [Co/Pd (9a), Ni/Pd (9b), Zn/Pd (9c) and Cu/Pd (9d)] in high yields. The bimetallic complex 9e (Mg/Pd) was prepared directly by complexation of 2 with MgBr2 and [(COD)PdCl2]. All complexes were characterized by both spectroscopic and elemental analyses. In addition, crystal structure of 9c was determined to confirm its formulation. The use of these bimetallic complexes as pre-catalysts for Mizoroki-Heck coupling reaction has been examined.  相似文献   

4.
The synthesis, structure and spectral and redox properties of the copper(II) complexes [Cu(pmtpm)Cl2] (1) and [Cu(pmtpm)2](ClO4)2 (6), where pmtpm is the linear tridentate ligand 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine containing a thioether and two pyridine donors, are described. Also, the mixed ligand complexes [Cu(pmtpm)(diimine)](ClO4)2 (2-5), where the diimine is 2,2′-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp) (4) or dipyrido-[3,2-d:2′,3′-f]-quinoxaline (dpq) (5), have been isolated and studied. The X-ray crystal structures of the complexes 1, [Cu(pmtpm)(2,9-dmp)](ClO4)24 and 6 have been successfully determined. The complex 1 possesses a trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry in which three corners of the square plane are occupied by two nitrogens and thioether s of pmtpm ligand and the remaining equatorial and the axial positions by two chloride ions. The complex 4 contains a CuN4S chromophore also with a TBDSBP coordination geometry in which two nitrogens and the thioether sulfur of pmtpm ligand occupy three corners of the square plane. One of the two nitrogens of 2,9-dmp ligand is equatorially coordinated and the other axially to copper. On the other hand, the complex 6 is found to possess a square based pyramidal distorted trigonal bipyramidal (SPDTBP) coordination geometry. The CuN2S trigonal plane in it is comprised of the pyridine and imine nitrogens and the thioether sulfur of the pmtpm ligand. The pyridine nitrogens of the ligand occupy the axial positions and the second thioether sulfur remains uncoordinated. On long standing in acetonitrile solution the mixed ligand complexes 2 and 3 undergo ligand disproportionation to provide the corresponding bis-complexes of bpy and phen, respectively, and 6. The electronic and EPR spectral parameters and the positive redox potential of complex 4 are consistent with the equatorial location of the thioether sulfur in the square-based coordination geometry around copper(II). On the other hand, the higher g and lower A values and lower E1/2 values for the complexes 2, 3 and 5 are consistent with the axial coordination of the thioether sulfur. Also, the Cu(II)/Cu(I) redox potentials increase with increase in number of aromatic rings of the diimine ligand. The steric and electronic effects of the bidentate diimine ligands in orienting the thioether coordination to axial or equatorial position are discussed.  相似文献   

5.
Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH2) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH2) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [CoIII(dmoInH)2]Cl·2H2O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [CoIII(dmoInH)2]Cl·2H2O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [CoIII(dmoBH)2]Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH2, compared to dmoBH2, in the solid state. Comparing the structure of the [CoIII(dmoInH)2]Cl·2H2O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.  相似文献   

6.
The mononuclear iron complexes Fe2a and Fe2b of expanded hexadentate Jäger type ligands H32a and H32b with [N4O2]-donorset were synthesized via reaction of the free ligands with iron(II) acetate. The identity of both compounds was proven by mass spectrometry and micro analysis. Furthermore crystals suitable for X-ray structure determination were obtained in case of Fe2a. The X-ray investigation reveals that this compound is a hexacoordinated iron complex with a rather rare trigonal prismatic geometry of the coordination polyeder: in this complex all six coordination sites are occupied by the donor atoms of the ligand exclusively, which was observed for the first time in iron complexes of Jäger type ligands. Electronic properties of Fe2b were characterized using EPR-spectroscopy and temperature dependent susceptibility measurements, indicating a high-spin Fe(III) complex.  相似文献   

7.
Polynuclear self-assembly molecules of general formula [{Pd(en)}x(ligand)y](NO3)2x (A) undergo ligand exchange reaction when heated in DMSO. A mixture of [Pdm(ligand)n](NO3)2m (B) and [Pd(en)2](NO3)2 (C) is generated in this process. The binuclear compound (A) containing a bidentate, non-chelating ligand 1,4-bis(4′-pyridylmethyl)-2,3,5,6-tetrafluorobenzene, is subjected to ligand exchange where upon the compound (A) remains in a dynamic equilibrium with the mixture of ensuing (B) and (C). Combination of separately prepared (B) and (C) also generates (A), thus equilibrium of (A) with (B) and (C) is again observed. We predict [{Pd(bpy)}x(ligand)y](NO3)2x (A′) where 2,2′-bipyridyl (bpy) is the cis-protecting group would not probably undergo ligand exchange. The idea was conceived from the fact that (bpy) is more rigid compared to (en) moreover one of the expected products in the event of ligand exchange [Pd(bpy)2](NO3)2 (C′) is not really very stable unlike (C). In fact, when (A′) is heated in DMSO no ligand exchange is observed at all. More interestingly combination of (B) and (C′) generated (A′) smoothly. Mononuclear complexes obtained from the ligand 4-phenylpyridine are also used for similar study for comparison. It is suggested that (bpy) could serve as a better cis-protecting group for Pd(II)-based self-assembly coordination cage compounds particularly when dissolution of the assemblies in polar solvents and heating of the resultant solution is required.  相似文献   

8.
The bidentate ligand benzylacetylacetone was used to synthesize the Cu(II) complexes 1 and 2 without and with 4,4-bipyridine ligand, respectively. The complexes were characterized by analytical and spectroscopic studies. The mononuclear complex [Cu(C10H9O2)2] (1) has been synthesized by the reaction of copper acetate with the ligand whereas the tetranuclear complex [Cu4(4,4-bpy)4(C10H9O2)4(C2H3O2)4] (2) has been synthesized by the reaction of copper acetate with the ligand followed by the addition of 4,4-bipyridine. The X-ray analysis shows that the complex 1 has square planar geometry and the complex 2 has square pyramidal geometry around the metal centers. The thermogravimetric studies showed that the complexes undergo decomposition in multiple steps.  相似文献   

9.
A novel bridging ligand 2,2′-bis(1,2,4-triazino[5,6-f]phenanthren-3-yl)-4,4′-bipyridine (btpb) and its mononuclear ruthenium(II) complex [Ru(bpy)2(btpb)]2+ (Rubtpb; bpy = 2,2′-bipyridyl) and dinuclear ruthenium(II) complex [Ru(bpy)2(btpb)Ru(bpy)2]4+ (Ru2btpb) have been synthesized and characterized by elemental analyses, fast atom bombardment or electrospray mass spectra, 1H NMR, and electronic spectroscopy. Binding behaviors of the mono- and dinuclear complexes with calf thymus DNA (CT-DNA) have been investigated by absorption spectra, viscosity measurements, and equilibrium dialysis experiments. As the concentration of DNA is increased, the electronic absorption spectra bands at the metal-ligand charge transfer of the mononuclear complex Rubtpb at 501.0 nm exhibit hypochromism of about 17.4% and bathochromism of 2.0 nm, the dinuclear complex Ru2btpb at 511.0 nm exhibits hypochromism of about 24.8% and bathochromism of 1.0 nm. The increasing amounts of the complexes on the relative viscosities of CT-DNA are much smaller than that of the classic intercalators. The experiments suggest that the Rubtpb and Ru2btpb may be bound to DNA by non-intercalating binder.  相似文献   

10.
Using the 1:2 condensate of benzildihydrazone and 2-acetylpyridine as a tetradentate N donor ligand L, LaL(NO3)3 (1) and EuL(NO3)3 (2), which are pale yellow in colour, are synthesized. While single crystals of 1 could not be obtained, 2 crystallises as a monodichloromethane solvate, 2·CH2Cl2 in the space group Cc with a = 11.7099(5) Å, b = 16.4872(5) Å, c = 17.9224(6) Å and β = 104.048(4)°. From the X-ray crystal structure, 2 is found to be a rare example of monohelical complex of Eu(III). Complex 1 is diamagnetic. The magnetic moment of 2 at room temperature is 3.32 BM. Comparing the FT-IR spectra of 1 and 2, it is concluded that 1 also is a mononuclear single helix. 1H NMR reveals that both 1 and 2 are mixtures of two diastereomers. In the case of the La(III) complex (1), the diastereomeric excess is only 10% but in the Eu(III) complex 2 it is 80%. The occurrence of diastereomerism is explained by the chiralities of the helical motif and the type of pentakis chelates present in 1 and 2.  相似文献   

11.
X-ray structures are presented of three new cobalt complexes prepared from Co(III) and N,N-1,10-phenanthroline-5,6-dione. The cis-aqua-chloro-bis(N,N-1,10-phenanthroline-5,6-dione)cobalt(II) nitrate trihydrate (3) and the cis-aqua-bromo-bis(N,N-1,10-phenanthroline-5,6-dione)cobalt(II) trifluoro-methanesulfonate tetrahydrate (4), crystalize in the same space group with a similar arrangement of the complex ions. However, on the molecular scale there are important differences. The cobalt complex in 3 has a typical high-spin geometry whereas in 4 the cobalt complex displays a Jahn-Teller distortion characteristic for low-spin compounds. The third structure is di(N,N-1,10-phenanthroline-5,6-diol)(N,N-1,10-phenanthroline-5,6-dione)cobalt(III) bromide hexahydrate (5). NMR studies of the hydration of the Co(III)(1,10-phenanthroline-5,6-dione)3 3+ ion in water and DMSO are also presented. The various possible transformations of the N,N-1,10-phenanthroline-5,6-dione ligand are discussed.  相似文献   

12.
The diphosphinite ligand 9,9-(Ph2POCH2)2-fluorene (1) was reacted with group 10 metal dichlorides to form chelate complexes of formula [MCl2(1)] (MNi, 2; MPd, 3; MPt, 4) showing 8-membered metallocycles. Chloride abstraction from 3 with AgOTf afforded the dinuclear complex [M(μ-Cl)Pd(1)]2(OTf)2 (5), in which the ligand adopts a different conformation with respect of 3. In 5, the fluorene moiety and the phenyl groups display stabilizing interactions with the anion which is located close to the metal centre. With Fe(II), Co(II) and Zn(II) chlorides, the non-isolated intermediates [MCl2(1)] readily undergo oxidation to [MCl2(1ox)] (MFe, 6; MCo, 7; MZn, 8; 1ox = 9,9-(Ph2P(O)OCH2)2-fluorene) in which the diphosphinate ligand and the metal centre form 10-membered metallocycles. Complexes 6-8 are the first examples of structurally characterized diphosphinate metal chelates. The Zn(II) diphosphinite complex [ZnCl2(1)] (9) could be observed by NMR spectroscopy, along with the mixed phosphinite-phosphinate, mono-oxidized complex which is an intermediate in the formation of 8. Complex [ZnCl2(9.9-fluorene-dimethanol)(Ph2P(O)H)] (10) was also observed as hydrolysis product of 9. The X-ray molecular structures of 2, 3, 5.2OTf, 6, 7, 8 and 10 are reported.  相似文献   

13.
Four different mononuclear octahedral Ni(II) complexes with protonated and deprotonated form of the same ligand have been synthesized by controlling reaction conditions and structurally characterized. The complexes are [Ni(HLl-his)(benzoate)(MeOH)] (1), [Ni(HLl-his)(SCN)(MeOH)] (2), [Ni(HLl-his)2] (3) and [Ni(Ll-his)(imidazole)2] (4) where H2Ll-his is (S)-2-(2-hydroxybenzylamino)-3-(1H-imidazol-4-yl)-propionic acid. The ligand behaves as a monobasic tetradentate ligand in 1 and 2, monobasic tridentate ligand in 3 and dibasic tetradentate ligand in 4. Ni(II) coordinated phenolic proton of the ligand in the complexes 1-2 shows strong intra-molecular H-bonding with benzoate in 1 and lattice water in 2, whereas 3 shows intermolecular H-bonding between uncoordinated phenols with neighbouring carboxylate. The pH titration of the complexes revealed that metal coordination and H-bond in complexes 1 and 2 considerably lowers the acidity of ligand phenol (pKa 6.8 and 7.0 respectively) compared to phenol (pKa 10). The complex 4 does not show any proton loss due to the absence of phenolic proton. All the complexes show extensive H-bonded network in the crystals including narrow (7.8 × 5.2 Å) water filled one dimensional channel in 2.  相似文献   

14.
Two new mixed ligand silver(I) complexes of formulae {[Ag(tpp)3(asp)](dmf)} (1) (aspH = o-acetylsalicylic acid and tpp = triphenylphosphine) and [Ag(tpp)2(o-Hbza)] (2) (o-HbzaH = o-hydroxy-benzoic acid) were synthesized and characterized by elemental analyses, spectroscopic techniques and X-ray crystallography at ambient conditions. Three phosphorus and one carboxylic oxygen atoms from a de-protonated aspirin ligand in complex 1 and two phosphorus and two carboxylic oxygen atoms from a chelating o-Hbza anion in complex 2 form a tetrahedral geometry around Ag(I) ions in both complexes.Complexes 1 and 2 and the silver(I) nitrate, tpp, aspNa and o-HbzaH were tested for their in vitro cytotoxic activity against leiomyosarcoma cells (LMS), human breast adenocarcinoma cells (MCF-7) and normal human fetal lung fibroblasts (MRC-5) cells with Thiazolyl Blue Tetrazolium Bromide (MTT) assay. For both cell lines 1 and 2 were found to be more active than cisplatin. Additionally, 1 and 2 exhibit lower activity on cell growth proliferation of MRC-5 cells. The type of LMS cell death caused by 1 and 2 were evaluated in vitro by use of flow cytometry assay. The results show that at concentrations of 1.5 and 1.9 μΜ of complex 1, 44.1% and 69.4%, respectively of LMS cells undergo programmed cell death (apoptosis). When LMS cells were treated with 1.6 and 2.3 μM of 2, LMS cells death was by 29.6% and 81.3%, respectively apoptotic. Finally, the influence of the complexes 1 and 2, upon the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was kinetically and theoretically studied. The binding of 1 and 2 towards LOX was also investigated by Saturation Transfer Difference (STD) 1H NMR experiments.  相似文献   

15.
A new easily synthetic route with a 96% yield of ligand 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethanol (L) is obtained. The reactivity of L against Pd(II), Zn(II) and Cu(II) leads to [PdCl2(L)2] (1), [ZnCl2(L)] (2) and [CuCl(L′)]2 (3) (L′ is the ligand L without alcoholic proton), respectively. According to the different geometries imposed by the metallic centre and the capability of L to present various coordination links, it has been obtained complexes with square planar (1 and 3) or tetrahedral (2) geometry and different nuclearity: monomeric (1 and 2) or dimeric (3). Complete characterisation by analytical and spectroscopic methods, resolution of L and 1-3 by single-crystal X-ray diffraction and magnetic studies for complex 3 are presented.  相似文献   

16.
The reaction between 3-methoxy-6-methyl-2-(naphthalen-2-yl)pyridine 1 and IrCl3 was performed in an attempt to synthesize a cyclometalated Ir(III) Cl-bridged dimer 2. An unexpected Ir(III) complex 3 was isolated, which was a five-coordinate bis-cyclometalated Ir(III) complex. The complexes 2 and 3 were converted to the same mononuclear complex 4 upon reacting with acetylacetonate (acac), respectively. All of the new compounds have been fully characterized by elemental analysis, IR, 1H, 13C{1H} NMR and ESI-MS. Additionally, the crystal structures and properties of these Ir(III) complexes are investigated. The most striking common features of the structures of 2 and 3 is intramolecular C-H···Cl hydrogen bonds. The complex 4 shows yellow phosphorescence with structureless emission peaks at about 556 nm.  相似文献   

17.
Reaction of Fe2(CO)9 at room temperature in THF with the di-thiooxamides (L), SC{N(R,R′)}C{(R,R′)N}S [R=Me, R′-R′=(CH2)2 (a); R=H, R′=iPr (b); R=H, R′=iPr (c), R=H, R′=benzyl (d); R=H, R′=H (e)], results for ligands a-d initially in the formation of the mononuclear σ-S, σ-S′ chelate complexes Fe(CO)3(L) (7a-d), which could be isolated in case of 7a and 7d. Under the reaction conditions, complexes 7a-d react further with [Fe(CO)4] fragments to give three types of Fe2(CO)6(L) complexes (8a-d) in high yields, depending on the di-thiooxamide ligand used together with traces of the known complex S2Fe3(CO)9 (14). The molecular structures of these complexes have been established by the single crystal X-ray diffraction determinations of 8a, 8b and 8d. In the reaction with ligand e the corresponding complex 7e was not detected and the well-known complexes 14 and S2Fe3(CO)9 (15) were isolated in low yield. In situ prepared 7a reacts in a slow reaction with 1 equiv. of dimethyl acetylene dicarboxylate in a 1,3-dipolar cycloaddition reaction to give the stable initial ferra [2.2.1] bicyclic complex 10a in 60% yield. In complex 10a an additional Fe(CO)4 fragment is coordinated to the sulfido sulfur atom of the cycloadded FeSC fragment. When a toluene solution of 10a is heated to 50 °C it loses two terminal CO ligands to give the binuclear FeFe bonded complex 11a in almost quantitative yield. The molecular structures of 10a and 11a have been confirmed by single crystal X-ray diffraction. Reaction of 7d at room temperature with 2 equiv. of dimethyl acetylene dicarboxylate results in the mononuclear complex 12d in 5% yield. The molecular structure of 12b has been established by single crystal X-ray diffraction and comprises a tetra dentate ligand with two ferra-sulpha cyclobutene, and a ferra-disulpha cyclopentene moiety. When the reaction is performed at 60 °C a low yield of 2,3,4,5-thiophene tetramethyl tertracarboxylate is obtained besides complex 12d.  相似文献   

18.
New bis(macrocyclic) dinickel(II) complexes with bis(Me2[14]-4,7-dien-6-ylidene), 2a and 2b, were synthesized by oxidation of a dinickel(II) complex with an unsaturated bis(macrocyclic) ligand containing four CN bonds, bis(Me2[14]-4,7-dien-6-yl) (1). Complex 2a was found to undergo intramolecular cyclization between the methyl group of one macrocycle and the carbon atom of the CN group of the other macrocycle to produce a bis(macrocyclic) dinickel(II) complex bridged by a fivemembered ring (3). The structures of 2b and 3 were determined by X-ray crystallography. The nonsymmetrical bis(macrocyclic) structure of the dinickel(II) complex 3 was reflected in its cyclic voltammogram and 1H and 13C NMR spectra. The catalytic capabilities of these bis(macrocyclic) nickel(II) complexes in the reductive debromination of 1-bromo-4-tert-butylbenzene were also investigated.  相似文献   

19.
Two three-dimensional (3D) novel lanthanide complexes with the H2Lbenzimidazole-5,6-dicarboxylate [Ln2L3(H2O)] [Ln = Eu (1), Tb (2)] and one two-dimensional (2D) novel lanthanide complex [Pr(L)(HL)H2O]·H2O (3) were synthesized by hydrothermal reaction at 180 °C and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction. The result showed that complexes 1 and 2 are isostructural and build porous 3D networks by L2− groups linking Ln(III) atoms via tetradentate (bridging and bridging) and pentadentate (bridging/chelating and bridging) coordination modes. Complex 3 is a eight-coordinated Pr(III) chain complex, exhibiting a 2D polymeric network with parallel Pr-carboxylate chains along the crystallographic c-axis. In addition, it is found that in these structures, coordination modes of L2− and HL are versatile and can adopt different conformations according to distinct dimensions of polymeric structures. The photoluminescent properties of 1, 2 and thermogravimetric analyses of the three complexes were discussed in detail.  相似文献   

20.
The cobalt(III) complexes of 4,11-diacetato-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (1), [Co(1)]PF6, and 4,11-diacetamido-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (2), [Co(2)][PF6]3, have been synthesized and characterized. The crystal structure of [Co(1)]PF6 consists of an octahedral cobalt(III) cation coordinated to all four ligand nitrogen donors in the macrobicycle’s cavity, as well as to the deprotonated carboxylate oxygen atoms of both pendant arms. Analytical and spectroscopic data indicates that the ligand in [Co(2)][PF6]3 is not deprotonated, suggesting coordination through the amide carbonyl oxygens. Study of the electronic spectra of these novel complexes and comparison with data from related cobalt(III) complexes characterizes the ligands as strong field with Δ0=24,040 and Δ0=24,250 cm−1 for 1 and 2, respectively. Cyclic voltammograms were obtained for both complexes with large variations observed due to the differences in ligand charge and coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号