首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New ligands containing a heterocyclic ring, L1 (1-anilino-2-(2-pyridyl)-naphth[1,2-d]imidazol-1-io-3-ide), L2 (2-phenyl-3-(2-pyridyl)-3,4-dihydro-naphtho[2,1-e][1,2,4]triazin-1-io-4-ide), and L3 (1-anilino-2-(2-quinolyl)-naphth[1,2-d]imidazol-1-io-3-ide), and their palladium (II) complexes have been prepared. Structures of the ligands and the complexes were determined by X-ray crystallography. The mononuclear square-planar complexes of [PdCl2(Ln)] (n = 1 (1), n = 2 (2) and n = 3 (3)) had didentate Ln (n = 1-3) ligands. The Ln (n = 1-3) ligands were stable and their absorption spectra did not change in dichloromethane and methanol. On the other hand, the absorption spectrum of [PdCl2(L2)] (2) in dichloromethane changed rapidly when methanol was added to the solution, and [PdCl(L4b)] (5) (L4b = N-[methoxy(2-pyridyl)methyl]-1-(phenylazo)-2-naphthylamide) was obtained from the concentrated reaction mixture. In this reaction, the dihydrotriazine ring of the didentate L2 ligand in complex 2 opened and the resulting tridentate L4b ligand coordinated to the Pd atom in complex 5. When an excess amount of (nBu)4NCl was added to complex 5 in dichloromethane, the absorption spectrum reverted to that of complex 2. Thus, the reversible ring opening and closure reactions of the coordinating dihydrotriazine ligand were observed. We also prepared [PdCl2(L5)] (9) (L5 = 1-(phenylazo)-N-[1-(2-pyridyl)ethylidene]-2-naphthylamine) and determined the structure. It is noted that neither the ring closure reaction nor the coordination of the azo nitrogen atom of the L5 ligand occurred in complex 9.  相似文献   

2.
Reaction of the potentially tetradentate N-donor ligand 6,6′-bis(4-methylthiazol-2-yl)-2,2′-bipyridine (L1) with the transition metal dications CoII, NiII, CuII, CdII and HgII results in the formation of mononuclear [M(L1)]2+ complexes, in which a planar ligand coordinates to the metals via all four N-donors. In contrast, reaction of L1 with CuI and AgI monocations, affords dinuclear double stranded helicate species [M2(L1)2]2+ (where M = CuI or AgI), in which partitioning of the ligand into two bis-bidentate pyridyl-thiazole chelating units allows each ligand to bridge both metal centres. X-Ray crystallography, electrospray mass spectroscopy and NMR spectroscopy reveal that the complexes [Mn(L1)m]z+ (where n = 1, m = 1 and z = 2, when M = CoII, NiII, CuII, CdII and HgII; n = 2, m = 2 and z = 2, when M = CuI), retain their solid-state structures in solution. Conversely, whilst 1H NMR studies suggest that combination of equimolar amounts of Ag(X)(where ) and L1 (in either nitromethane or acetonitrile) results in the formation of a helicate in solution, in the solid-state, an anion-templating effect gives rise to either mononuclear or dinuclear helicate structures [Agn(L1)n][X]n (where n = 2 when X = OTf; n = 1 when ).  相似文献   

3.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

4.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

5.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

6.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

7.
The synthesis, crystal structures and magnetic properties of two different copper(II) complexes of formula [Cu(L1)(dca)]n · nClO4 (1) and [Cu(L2)]2(dca)(ClO4) (2) [L1 = N,N-dimethylethylene-N′-(pyridine-2-carbaldiiminato), HL2 = N,N-dimethylethylene-N′-salicylaldiiminato, dca = dicyanamide anion] are described. Spectroscopic and electrochemical properties have also been discussed. A one-dimensional chain structure with single, symmetrical, μ1,5-dca bridges is found in compound 1. The copper atom in 1 has a square pyramidal geometry. A tridentate Schiff base ligand, having NNN donor sites, and one nitrogen atom from dca occupy the basal plane. N(18) of a neighbouring unit occupies the apical site. The Schiff base used in compound 2 is a tridentate anion with NNO donor sites, which changes the structure in a dinuclear unit of copper atoms bridged by single end-to-end dicyanamide ion. The environment around copper in 2 is square planar. Magnetic susceptibility measurements for 1 and 2 reveal the occurrence of weak antiferromagnetic interaction through the dca ligand.  相似文献   

8.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

9.
A new synthetic route to the known tripodal tetradentate N3O ligand L1 (HL1 = [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine) is reported. The related compounds HLn (n = 2, 3) were prepared by a similar procedure. Treatment of HLn (n = 1-3) with FeCl3·6H2O in hot methanol led to the mononuclear iron(III) complexes [Fe(Ln)Cl2] (1: n = 1, 2: n = 2, 3: n = 3). The solid-state structures of complexes 1 and 2 were determined by X-ray crystallography. [Fe(L1)Cl2] (1) showed effective nuclease activity in the presence of hydrogen peroxide, converting supercoiled plasmid DNA to its linear form.  相似文献   

10.
A new silver(II) complex, {[Ag(L1)](NO3)2·4H2O}n (1) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12] docosane) has been synthesized and structurally characterized by a combination of analytical, spectroscopic, electrochemical and X-ray diffraction methods. The complex 1 exhibits a 1D supramolecular polymer with the silver(II) macrocycle L1 and nitrate ions, where 1D chain is formed by hydrogen bonds between the two sets of pre-organized N-H groups of the macrocycle and nitrate ions. The lattice water molecules mediate to interconnect each 1D chain to form the 2D supramolecular sheet. In 1 the unusual high oxidation state of Ag(II) is stabilized by the tetraazamacrocyclic ligand L1. The cyclic voltammogram for 1 indicates that the electrochemical oxidation of [Ag(L1)]2+ is an irreversible process.  相似文献   

11.
The first [Pd(Ln)2(ox)] xH2O oxalato(ox) complexes involving 2-chloro-N6-(benzyl)-9-isopropyladenine (L1; complex 1), 2-chloro-N6-(4-methoxybenzyl)-9-isopropyladenine (L2; 2), 2-chloro-N6-(2,3-dimethoxybenzyl)-9-isopropyladenine (L3; 3), 2-chloro-N6-(2,4-dimethoxybenzyl)-9-isopropyladenine (L4; 4), and 2-chloro-N6-(4-methylbenzyl)-9-isopropyladenine (L5; 5) have been synthesized by the reactions of potassium bis(oxalato)palladate(II) dihydrate, [K2Pd(ox)2]·2H2O, with the mentioned organic compounds (H2ox = oxalic acid; x = 0 for 1-3 and 5 or 2 for 4). Elemental analyses (C, H, N), FTIR, Raman and NMR (1H, 13C, 15N) spectroscopies, conductivity measurements and thermal studies (thermogravimetric and differential thermal analyses, TG/DTA) have been used to characterize the prepared complexes. The molecular structures of [Pd(L2)2(ox)] (2) and [Pd(L5)2(ox)]·L5·Me2CO (5·L5·Me2CO) have been determined by a single crystal X-ray analysis. The geometry of these complexes is slightly distorted square-planar with two appropriate Ln (n = 2 or 5) molecules mutually arranged in the head-to-head (2) or head-to-tail (5) orientation. The Ln ligands are coordinated to the central Pd(II) ion via the N7 atoms. The same conclusions regarding the binding properties of L1-L5 ligands can be made based on multinuclear NMR spectra. In vitro cytotoxicity of the complexes 1-5 has been evaluated against human chronic myelogenous leukaemia (K562) and human breast adenocarcinoma (MCF7) cancer cell lines. Significant cytotoxicity has been determined for the complexes 3 (IC50 = 6.2 μM) and 5 (IC50 = 6.8 μM) on the MCF7 cell line, which is even better than that found for the well-known and widely-used platinum-bearing antineoplastic drugs, i.e. oxaliplatin and cisplatin.  相似文献   

12.
Two new organotin(IV) complexes with dianionic dipeptides containing the α-aminoisobutyryl residue (Aib) as ligands are described. The solid complexes [(n-Bu)2Sn(H−1LA)] · 2MeOH (1 · 2MeOH) (LAH = H-Aib-L-Leu-OH) and [(n-Bu)2Sn(H−1LB)] · MeOH (2 · MeOH) (LBH = H-Aib-L-Ala-OH) have been isolated and characterized by single-crystal X-ray crystallography and spectroscopic techniques (H−1L2− is the dianionic form of the corresponding dipeptide). Complexes 1 · 2MeOH and 2 · MeOH are monomeric with similar molecular structures. The doubly deprotonated dipeptide behaves as a N(amino), N(peptide), O(carboxylate) ligand and binds to the SnIV atom. The five-coordinate metal ion has a distorted trigonal bipyramidal geometry. A different network of intermolecular hydrogen bonds in each compound results in very dissimilar supramolecular features. The IR, far-IR, Raman and 119Sn NMR data are discussed in terms of the nature of bonding and known structures. The antibacterial and antiproliferative activities as well as the effect of the new compounds on pDNA were examined. Complexes 1 and 2 are active against the gram-positive bacteria Bacillus subtilis and Bacillus cereus. The IC50 values reveal that the two compounds express promising cytotoxic activity in vitro against a series of cell lines.  相似文献   

13.
Synthesis and single crystal X-ray structures of H2L1 and VO(L1)(HL) [H2L1 = N,N-bis(2-hydroxy-3,5-ditertiarybutyl)-N′,N′-dimethylethylendiamine) or simply aminebis(phenol) and H2L = salicylic acid) are reported here. The complex [VO(L1)(HL)] is in distorted octahedral geometry under O4N2 donor environment where the basal core is defined by O(1), O(3), O(2) and N(5) atoms and two axial coordinates are occupied by O(4), an alkoxo-group and N(1), an imino-nitrogen atom. The electron spray mass spectrometric study on [VO(L1)(HL)] in MeCN clearly points out the existence of single species in solution. Again, the 51V NMR of the bulk polycrystalline sample reveals that the complex [VO(L1)(HL)] mainly exists in three out of four possible isomers. The formation of [VO(L1)(HL)] from both [VO(L1)(OMe)] and [VO(L1)(OEt)] was followed kinetically by reacting with salicylic acid in MeCN. The presence of isosbestic point indicates a clean conversion of the reactants to product.  相似文献   

14.
Four organotin(IV) complexes with general formula [RSnCln−1(TCB)] [R = Ph2, n = 2 (2); R = Me, n = 3 (3); R = Bu, n = 3 (4); R = Ph, n = 3 (5)] have been synthesized by direct reaction of thiophene-2-carboxaldehyde benzhydrazone ligand [HTCB, (1)], base and organotin(IV) chloride in absolute methanol under N2 atmosphere. All organotin(IV) complexes were characterized by elemental analyses, molar conductivity, UV-Vis, FT-IR, 1H and 13C NMR spectral studies. Among them, diphenyltin(IV) complex (2) has also been characterized by X-ray crystallography diffraction analyses. The cytotoxicity of the hydrazone ligand as well as its organotin(IV) complexes (2-5) were determined with Artemia salina. While no-choice bioassay was employed on Coptotermes sp. to evaluate the termiticidal effect of all the complexes. Besides, the ligand (1) and its organotin(IV) complexes (2-4) were also tested against five types of bacteria namely Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi.  相似文献   

15.
The reaction of AgX with the diphosphazane ligand, PriN(PPh2)2 (L) gives the polymeric complexes, [Ag2(μ-X)2(μ-L)]n (X = NO31a or OSO2CF31b). Single crystal X-ray analysis of 1a reveals a novel structural motif formed by interlinking of giant 40-membered rings; the diphosphazane ligand L adopts a unique ‘Cs’ geometry. These polymeric complexes exhibit a completely reversible ring-opening polymerization-depolymerization relationship with the dinuclear and mononuclear complexes, [{Ag(μ-L)(X)}2] (X = NO32a, X = OSO2CF32b) and [Ag(κ2-L)2]X (X = NO33a, X = OSO2CF33b).  相似文献   

16.
Ligands containing the 2-organochalcogenomethylpyridine motif with substituents in the 4- or 6-position of the pyridyl ring, R4,R6-pyCH2ER1 [R4 = R6 = H, ER1 = SMe (1), SeMe (2), SPh (6), SePh (7); R4 = Me, R6 = H, ER1 = SMe (3), SPh (8), SePh (9); R4 = H, R6 = Me, ER1 = SMe (4), SPh (10), SePh (11); R4 = H, R6 = Ph, ER1 = SMe (5), SPh (12), SePh (13)] are obtained on the reaction of R4,R6-pyMe with LiBun followed by R1EER1. On reaction with PdCl2(NCMe)2, the ligands with a 6-phenyl substituent form cyclopalladated species PdCl{6-(o-C6H4)pyCH2ER1-C,N,E} (5a, 12a, 13a) with the structure of 13a (ER1 = SePh) confirmed by X-ray crystallography; other ligands form complexes of stoichiometry PdCl2(R4,R6-pyCH2ER1). Complexes with R6 = H are monomeric with N,E-bidentate configurations, confirmed by structural analysis for 3a (R4 = Me, ER1 = SMe), 7a (R4 = H, ER1 = SePh) and 9a (R4 = Me, ER1 = SePh). Two of the 6-methyl substituted complexes examined by X-ray crystallography are oligomeric with trans-PdCl2(N,E) motifs and bridging ligands, trimeric [PdCl2(μ-6-MepyCH2SPh-N,S)]3 (10a) and dimeric [PdCl2(μ-6-MepyCH2SePh-N,Se)]2 (11a). This behaviour is attributed to avoidance of the Me···Cl interaction that would occur in the cis-bidentate configuration if the pyridyl plane had the same orientation with respect to the coordination plane as observed for 3a, 7a and 9a [dihedral angles 8.0(2)-16.8(2)°]. When examined as precatalysts for the Mizoroki-Heck reaction of n-butyl acrylate with aryl halides in N,N-dimethylacetamide at 120 °C, the complexes exhibit the anticipated trends in yield (ArI > ArBr > ArCl, higher yield for electron withdrawing substituents in 4-RC6H4Br and 4-RC6H4Cl). The most active precatalysts are PdCl2(R4-pyCH2SMe-N,S) (R = H (1a), Me (3a)); complexes of the selenium containing ligands exhibit very low activity. For closely related ligands, the changes SMe to SPh, 6-H to 6-Me, and 6-H to 6-Ph lead to lower activity, consistent with involvement of both the pyridyl and chalcogen donors in reactions involving aryl bromides. The precatalyst PdCl2(pyCH2SMe-N,S) (1a) exhibits higher activity for the reaction of aryl chlorides in Bun4NCl at 120 °C as a solvent under non-aqueous ionic liquid (NAIL) conditions.  相似文献   

17.
Two new mononuclear spin-crossover iron(II) complexes, [FeL2(NCS)2] · H2O (1) and [FeL2(NCSe)2] (2), have been synthesized from the reaction of the versatile ligand 4,5-bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole (L), Fe(ClO4)2, and KNCX (X = S/Se). Reactions of L with CuII or CoII salts afford one mononuclear complex [CuL(hfac)2] · CH3OH (hfac = hexafluoroacetylacetonate) (3), one dinuclear complex [(CuLCl)2(μ-Cl)2] · CH3OH (4), and two 1D chain species, [CuL2]n(BF4)2n (5) and [CoL2]n(ClO4)2n · 2nCH2Cl2 (6). The crystal structures of complexes 1 and 3-6 have been determined by X-ray crystallography. Short intermolecular S?S contacts between neighboring 1D arrays are observed in 5 and 6, which lead to the formation of the 2D structure. The magnetic properties are studied, and antiferromagnetic couplings between the CuII centers across the chloride bridges have been found in 4 (J = 2.04 cm-1). Spin-crossover behaviors between high and low spin states are observed at T1/2 = 80 K for 1 and T1/2 = 300 K for 2, respectively.  相似文献   

18.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

19.
The first FeIII complexes 1-6 with cyclin-dependent kinase (CDK) inhibitors of the type [Fe(Ln)Cl3nH2O (n = 0 for 1, 1 for 2, 2 for 3-6; L1-L6 = C2- and phenyl-substituted CDK inhibitors derived from 6-benzylamino-9-isopropylpurine), have been synthesized and characterized by elemental analysis, IR, 57Fe Mössbauer, 1H and 13C NMR, and ES+ mass spectroscopies, conductivity and magnetic susceptibility measurements, and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The study revealed that the compounds are mononuclear, tetrahedral high-spin (S = 5/2) FeIII complexes with an admixture of an S = 3/2 spin state originating probably from five-coordinated FeIII ions either connecting with a bidentate coordination mode of the CDK inhibitor ligand or relating to the possibility that one crystal water molecule enters the coordination sphere of the central atom in a portion of molecules of the appropriate complex. Nearly spin-only value of the effective magnetic moment (5.82 μeff/μB) was determined for compound 1 due to absence of crystal water molecule(s) in the structure of the complex. Based on NMR data and DFT calculations, we assume that the appropriate organic ligand is coordinated to the FeIII ion through the N7 atom of a purine moiety. The cytotoxicity of the complexes was tested in vitro against selected human cancer cell lines (G-361, HOS, K-562 and MCF-7) along with the ability to inhibit the CDK2/cyclinE kinase. The best cytotoxicity (IC50: 4-23 μM) and inhibition activity (IC50: 0.02-0.09 μM) results have been achieved in the case of complexes 2-4, and complexes 3, 4 and 6, respectively. In addition, the X-ray structure of 2-chloro-6-benzylamino-9-isopropylpurine, i.e. a precursor for the preparation of L1, L4 and L5, is also described.  相似文献   

20.
Eight triorganotin complexes of the types [(R3Sn)2(C24H16N8S2)].Y (R = Ph, Y = 0 (1); R = PhCH2, Y = 2CH3OH (2); R = n-Bu, Y = 0 (3)), [(R3Sn)2(C24H16N8S2)]n (R = Me (4)), [(R3Sn)2(C12H6N6S4)] · Y (R = Ph, Y = CH2Cl2 (5); R = PhCH2, Y = 0 (6)) and [(R3Sn)2(C12H6N6S4)] (R = Bu (7), R = Me (8)) have been obtained by H2L1 (H2L1 derived from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol) and H2L2 (H2L2 derived from 5-amino-1,3,4-thiadiazole-2-thiol) with triorganotin chloride in the presence of sodium ethoxide. All the complexes were characterized by elemental, IR and NMR spectra analyses, except for complexes 1, 3, 6 and 8, other complexes were also characterized by X-ray diffraction analyses, which reveal that complexes 2 and 5 are dinuclear structures, complex 4 has a 2D network structure and complex 7 forms a macrocyclic structure linked by intermolecular N → Sn interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号