首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed-ligand complexes of the formula [Ag(PPh3)(L)Br]2 were obtained by treatment of various heterocyclic thiones L {L=pyridine-2-thione (py2SH), pyrimidine-2-thione (pymtH), benz-1,3-imidazoline-2-thione (bzimtH2), benz-1,3-thiazoline-2-thione (bztztH), 1-methyl-1,3-imidazoline-2-thione (meimtH) and 5-methoxy-benz-1,3-imidazoline-2-thione (5MeObzimtH2)} with equivalent quantities of silver(I) bromide and triphenylphosphine in dry acetone. The compounds were characterized by their IR, far-IR, UV–Vis and 1H NMR spectroscopic data. The crystal structure of [Ag(PPh3)(pymtH)Br]2 was determined by single-crystal X-ray diffraction methods. The complex exhibits a planar Ag2Br2 moiety in which each of the doubly bromine-bridged Ag(I) centres is further bonded to one phosphine P and one thione S atom.  相似文献   

2.
1:1 and 2:1 adducts of diphosphine ligands R2P(R′)nPR2 (dppm: R = Ph, R′ = CH2, n = 1; dppe: R = Ph, R′ = CH2, n = 2; dppp: R = Ph, R′ = CH2, n = 3; dppb: R = Ph, R′ = CH2, n = 4; dppf: R = Ph, R′ = ferrocenyl, n = 1) with silver(I) methanesulfonate have been synthesized and characterized both in solution (1H, 31P NMR) and in the solid state (IR, single crystal X-ray structure analysis). The two different stoichiometries have been found to depend on the molar ratio of ligand to metal employed and the nature of the diphosphine ligand. In AgO3SMe:dppp,dppb (1:1)2, in the [Ag(P^P)2Ag] arrays, the silver atoms are also bridged by anion oxygen atoms, in disparate fashion commensurate with the different Ag?Ag distances.  相似文献   

3.
The reactions of silver perchlorate and tetraiodoethylene in different solvents, namely, benzene and toluene, isolated two silver(I)–iodocarbon complexes, [Ag(C2I4)(C6H6)2(ClO4)] (1) and [Ag(C2I4)(ClO4)] (2). Both compounds contain intact iodoalkenes which coordinate via σ-donation of a halogen lone pair and retain their carbon–iodine bonds. Owing to the participation of the benzene molecules in coordination, complex 1 is found to be a discrete monomer in which the five-coordinate geometry of the silver ion is comprised of two benzene molecules, one C2I4 group and one perchlorate ion. In contrast, the unsaturated coordination environment of the metal ion in 2 is filled by the second iodocarbon group leading to a two-dimensional framework. The coordinated tetraiodoethylene molecules involve severe twisting of the C=C double bond, causing the C=C stretching band to move to a lower frequency.  相似文献   

4.
Six hydrogen-bonded silver(I) complexes, Ag(4-abaH)2(NO3) (1), [Ag(4-abaH)2(NO3)]n (2), {[Ag(4-aba)(4-abaH)] · H2O}n (3), {[Ag(4,4-bipy)(H2O)](4-aba)0.5(NO3)0.5 · (H2O)0.5}n (4), [Ag[(3-abaH0.5)2] (5), and {[Ag(3-aba)] · H2O}n (6) (4-abaH=4-aminobenzoic acid, 3-abaH=3-aminobenzoic acid), have been synthesized and characterized by single-crystal X-ray diffraction analyses. In 1, 4-abaH serves as a monodentate ligand coordinating to Ag(I) through its nitrogen atom, while uncoordinated carboxylic group links (4-abaH)-Ag-(4-abaH) into a one-dimensional metallic carboxylic synthon. 2 may be regarded as an extension of 1 into a two-dimensional carboxylic synthon through NO3 − bridging two adjacent Ag(I) centers. In 3, 4-abaH in a monodentate mode and 4-aba in a μ-N,O bridging mode link three-coordinated Ag(I) to form a one-dimensional swallow-like chain, which is further extended into a two-dimensional layer structure through inter-chain hydrogen bonding interactions. The alternating Ag(I) and 4,4-bipy in 4 give rise to a slightly distorted linear chain, which is further extended into a two-dimensional layer through the completely overlapping and off-set stacking interactions. The hydrogen bonds involving in weakly coordinated aqueous molecules and 4-aba further extend it into a three-dimensional framework. In 5, the inter-molecular hydrogen bonding and π-π stacking interactions extend Ag[(3-abaH0.5)2] into a two-dimensional supramolecular architecture. In 6, 3-aba in a μ3-N,O,O coordination mode links three three-coordinated Ag(I) into a two-dimensional network. Uncoordinated aqueous molecules and the adjacent 3-aba oxygen atoms form intermolecular hydrogen bonds.  相似文献   

5.
Five new silver(I)-saccharinate complexes [Ag2(sac)2(tmen)2] (1), [Ag2(sac)2(deten)2] (2), [Ag2(sac)2(dmen)2] (3), [Ag(sac)(N,N-eten)] (4), and [Ag(sac)(dmpen)]n (5); (sac = saccharinate, tmen = N,N,N′,N′-tetramethylethylenediamine, deten = N,N′-diethylethylenediamine, dmen = N,N′-dimethylethylenediamine, N,N-eten = N,N-diethylethylenediamine and dmpen = 1,3-diamino-2,2-dimethylpropan) have been synthesized and characterized by elemental analyses, IR, thermal analyses, single crystal X-ray diffraction and antimicrobial activities. The crystallographic analyses show that all the complexes crystallize in monoclinic space group P21/c. In 1, the sac ligand acts as a bridge to connect the silver centres through its imino N and carbonyl O atoms forming an eight-membered bimetallic ring in a chair conformation. Complex 2 has also a dimeric structure in which the monomeric [Ag(sac)(deten)] units are linked by Ag?Ag interactions. In 3, saccharinate ligand acts as a bridging bidentate ligand between two silver(I) centres through sulfonyl group and imino N atom, forming an alternating polymeric chain through the direction [0 1 0]. In 4, the inter-molecular N-H?O hydrogen bonds form one-dimensional polymeric chains through the a axis, and these linear chains are inter-connected to each other by N-H?O hydrogen bonds, which produce a chain of edge-fused and rings along [1 0 0]. Complex 5 is a coordination polymer in which the monomeric [Ag(dmpen)(sac)]n units are linked by Ag?Ag interactions, and the dmpen ligand acts as a bridge between the silver(I) ions, forming a two-dimensional network parallel to the (1 0 0) plane.  相似文献   

6.
A series of chiral Ag(I) and Cu(II) complexes have been prepared from the reaction between AgX (X = NO3, PF6, OTf) or CuX2 (X = Cl, ClO4) and chiral biaryl-based N-ligands. The rigidity of the ligand plays an important role in the Ag(I) complex formation. For example, treatment of chiral N3-ligands 1-3 with half equiv of AgX (X = NO3, PF6, OTf) gives the chiral bis-ligated four-coordinated Ag(I) complexes, while ligand 4 affords the two-coordinated Ag(I) complexes. Reaction of AgX with 1 equiv of chiral N4-ligands 5, 7, 8 and 10 gives the chiral, binuclear double helicate Ag(I) complexes, while chiral mono-nuclear single helicate Ag(I) complexes are obtained with N4-ligands 6 and 9. Treatment of either N3-ligand 1 or N4-ligand 9 or 10 with 1 equiv of CuX2 (X = Cl, ClO4) gives the mono-ligated Cu(II) complexes. All the complexes have been characterized by various spectroscopic techniques, and elemental analyses. Seventeen of them have further been confirmed by X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do exhibit catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

7.
Mononuclear and dinuclear silver(I) complexes bearing 1,8-naphthyridine (napy) were prepared. The crystal structures of [Ag(napy-κN)2](PF6) (1) and [Ag2(μ-napy)2](PF6)2 · 3CH3CN (2 · 3CH3CN) were determined by X-ray diffraction studies. In complex 1, intermolecular π-π interaction of napy ligands between neighboring molecules forms left-handed hexagonal columns in the solid state. On the other hand, two napy ligands bridging two Ag ions in the dinuclear complex 2 shape a face-to-face π-π stacking with those of the neighboring molecule to form the dimeric unit. Besides, two of four napy ligands, which are located in a diagonal position in the dimeric unit, build intermolecular back-to-back π-π stackings with those of the adjacent dimeric unit, and a ladder-like stairway structure is generated in the solid state. Irrespective of such characteristic structures of 1 and 2 in the solid state, both complexes show very rapid dynamic behavior in solutions. No conversion between 1 and 2 took place even in the presence of excess amounts of Ag+ or napy in solutions.  相似文献   

8.
The crystal structures of two 1:1 ligand-silver(I) cyanide complexes, [Ag(CN)(en)] (en = ethane-1,2-diamine) (1) and [Ag(CN)(pn)] (pn = propane-1,2-diamine) (2), and of two 2:1 ligand-silver(I) cyanide compounds, [(AgCN)2 · tn] (tn = propane-1,3-diamine) (3) and [(AgCN)2 · bn] (bn = butane-1,4-diamine) (4), were determined from single-crystal X-ray diffraction data, collected at 173 K. In 1 and 2, mononuclear AgCN complexes are formed, in which silver(I) is coordinated by one cyanide and one chelating alkanediamine donor ligand. However, in the dinuclear adducts of 3 and 4, two AgCN units are connected by one alkane-1,n-diamine bridging ligand (n = 3, 4). The resulting molecules of 1-4 are cross-linked via N-H?N hydrogen bonds. Apart from these intermolecular contacts, comparatively short Ag(I)-Ag(I) distances of 3.182(1) Å (in 1), 3.267(1) Å (in 2), 3.023(2) Å (in 3) and 3.050(2) Å (in 4) occur.  相似文献   

9.
Hydrophilic, monocationic [M(L)4]PF6 complexes (M = Cu or Ag; L: thp = tris(hydroxymethyl)phosphine, L: PTA = 1,3,5-triaza-7-phosphaadamantane, L: thpp = tris(hydroxypropyl)phosphine) were synthesized by ligand exchange reaction starting from [Cu(CH3CN)4]PF6 or AgPF6 precursors at room temperature in the presence of an excess of the relevant phosphine. The related [Au(L)4]PF6 complexes (L = thp, PTA or thpp) were synthesized by metathesis reactions starting from [Au(L)4]Cl at room temperature in the presence of equimolar quantity of TlPF6. The three series of complexes [M(L)4]PF6 were tested as cytotoxic agents against a panel of several human tumour cell lines also including a defined cisplatin resistant cell line. These investigations have been carried out in comparison with the clinically used metallodrug cisplatin and preliminary structure-activity relationships are presented. The best results in terms of in vitro antitumour activity were achieved with metal-thp species and, among the coinage metal complexes, copper derivatives were found to be the most efficient drugs. Preliminary studies concerning the mechanism of action of these [M(L)4]PF6 species pointed to thioredoxin reductase as one of the putative cellular targets of gold and silver complexes and provided evidence that copper derivatives mediated their cytotoxic effect through proteasome inhibition.  相似文献   

10.
Zhang W  Jiang T  Ren S  Zhang Z  Guan H  Yu J 《Carbohydrate research》2004,339(12):2139-2143
Two new complexes [Cu(N,N',N"-(D-Glc)3-tren)Cl]Cl (1) and [Cu(N,N',N"-(maltose)-tren)]Cl2.H2O (2), have been synthesized and characterized by elementary analysis, and the IR and UV spectra suggest that complex 1 and complex 2 are arranged in trigonal bipyramidal configuration and square-pyramidal configuration, respectively. The crystal structure of complex 1 has been determined by X-ray diffraction as: a = 9.3476(8), b = 17.4236(13), c = 9.7836(8) angstroms, beta = 91.197 degrees, and V = 1593.1(2) Angstroms3, Z = 2, and R = 0.0325, which shows that three secondary amine groups (N-1, N-2, N-3) of the glycosylamine ligand forms the equatorial plane, and the tertiary amine (N-4) and one Cl- are located at the apical positions.  相似文献   

11.
The double-helicate dinuclear silver(I) complex [Ag2L2](SO3CF3)2 (1) was obtained by reaction of AgSO3CF3 with 4′-phenyl-terpyridine (L). Each Ag+ ion is coordinated by two N-atoms from one of the ligands and by one N-atom of the other ligand, forming an irregular Ag2N6 bi-triangle geometry, with a metallic bond between the two silver ions. Complex 1 reacts with potentially bidentate ligands (L1), such as 9,10-bis(diphenylphosphino)anthracene (PAnP), 4,4′-dipyridyl or bis(diphenyl phosphino)methane (DPPM), to give the corresponding dinuclear complexes with bridging L1, [Ag2L2(μ-L1)](SO3CF3)2 (L1 = PAnP 2, 4,4′-dipyridyl 3 or DPPM 4), whereas on reaction with PPh3 forms the mononuclear complex [AgL(PPh3)](SO3CF3) 5. Reaction of 1 with the potentially tridentate ligand tris(2-diphenylphosphinoethyl)amine (NP3) results in complete decomposition of the coordination spheres to form [Ag(NP3)](SO3CF3) 6. Compound 1 shows a strong fluorescence in the solid state with its excitation band at 383.5 nm, the emission band at 535.5 nm and the lifetime of 4.20 ns, but the derived complexes do not show fluorescent properties. The photoluminescence of 1 in various solvents was also studied. The complexes were characterized by 1H NMR, elemental analysis, IR, MS, UV and single crystal X-ray diffraction.  相似文献   

12.
Three new copper(I) complexes with tricyclohexylphosphine (PCy3) and different diimine ligands, [Cu(phen)(PCy3)]BF4 (1) (phen = 1,10′-phennanthroline), [Cu(bpy)(PCy3)2]BF4 (2) (bpy = 2,2′-bipyridine) and [Cu(MeO-CNN)(PCy3)]BF4 (3) (MeO-CNN = 6-(4-methoxyl)phenyl-2,2′-bipyridine), have been synthesized and characterized. X-ray structure reveals that complexes 1 and 3 are three-coordinated with trigonal geometry, while complex 2 adopts distorted tetrahedron geometry. Complexes 1 and 3 exhibit ligand redistribution reactions in chloromethane solution by addition of excess amount of PCy3, in which three-coordinated 1 changes into four-coordinated [Cu(phen)(PCy3)2]+, and 3 leads to form [Cu(PCy3)2]BF4 and CNN-OMe. All the three complexes display yellow 3MLCT emissions in solid state at room temperature with λmax at 558, 564 and 582 nm for 1, 2 and 3, respectively, and red-shift to 605, 628 and 643 nm at 77 K in dichloromethane solution.  相似文献   

13.
The preparation and magnetic properties of three copper(II) compounds of formulae [Cu2(bpcam)2(H2O)2(C2O4)] (1), [Cu2(bpcam)2(H2O)4(C4O4)] · 10 H2O (2) and Cu2(bpcam)2(C5O5)(H2O)3 (3) [bpcam = bis(2-pyrimidyl)amidate, and are reported. The structures of two of them (1 and 2) have been solved by single crystal X-ray diffraction and consists of centrosymmetric discrete copper(II) dinuclear units bridged by bis-bidentate oxalate (1) and bis-monodentate squarate (2), with the bpcam group acting as a terminal tridentate ligand. Each copper atom in 1 exhibits a distorted elongated octahedral coordination geometry. Three bpcam nitrogen atoms and one oxalate oxygen define the basal plane while the other oxalate oxygen and a water molecule take up the axial positions. Each copper atom in 2 is in an elongated octahedral surrounding with three bpcam nitrogen atoms and one squarate oxygen in the equatorial plane and two water molecules in the axial positions. The intramolecular copper-copper separations are 5.677(1) (1) and 7.819(53) Å (2). Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K show the occurrence of weak ferromagnetic interactions through oxalato (J = +0.75 cm−1) and squarato (J = +1.26 cm−1), the Hamiltonian being defined by . These values are analyzed and discussed in the light of the available magneto-structural data for analogous systems. The quasi-Curie law observed in 3 (θ = −1.15 K) contrasts with the significant antiferromagnetic interaction through bis-chelating croconate in other structurally characterized croconate-bridged copper(II) complexes and rules out the presence of bridging croconate in this compound.  相似文献   

14.
Condensation of (S,S)-1,2-cyclohexanediamine with 2 equiv. of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives N,N′-bis(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine (S,S-1) in 95% yield. Reduction of 1 with an excess of NaBH4 in MeOH at 50 °C gives N,N′-bis(pyridin-2-ylmethyl)-(S,S)-1,2-cyclohexanediamine (S,S-2) in 90% yield. Reaction of 1 or 2 with 1 equiv. of CuCl2 · 2H2O in methanol gives complexes [N-(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine]CuCl2 (3) and [Cu(S,S-2)(H2O)]Cl2 · H2O (4), respectively, in good yields. Complex 4 can further react with 1 equiv. of CuCl2 · 2H2O in methanol to give [Cu(S,S-2)][CuCl4] (5) in 75% yield. The rigidity of the ligand coupled with the steric effect of the free anion plays an important role in the formation of the helicates. Treatment of ligand S,S-1 with AgNO3 induces a polymer helicate {[Ag(S,S-1)][NO3]}n (6), while reaction of ligand 2 with AgPF6 or AgNO3 in methanol affords a mononuclear single helicate [Ag(S,S-2)][PF6] (7) or a dinuclear double helicate [Ag2(S,S-2)2][NO3]2 · 2CH3OH (8) in good yields, respectively. All compounds have been characterized by various spectroscopic data and elemental analyses. Compounds 1, 3-5, 7 and 8 have been further subjected to single-crystal X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do show catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

15.
Two new polymeric silver(I)-fluconazole complexes: [Ag(HFlu)(NO3)]n (1) and {[Ag(HFlu)2](ClO4)}n (2), have been synthesized and structurally characterized. The crystal structure of 1 consists of infinite 1D single strand helical coordination arrays with alternative …PMPM… arrangements, which are interlinked through hydrogen bonding interactions to generate a 3D network. The shortest intrachain Ag?Ag distance bridged by HFlu ligand is 8.287(1) Å. In 2, each Ag(I) ion is coordinated by four triazole N atoms from four HFlu ligands to form a 2D coordination layer, which has a helical arrangement along the [1 0 0] direction. The results of anti-fungal studies demonstrate that both silver(I) complexes are more active in comparison to the fluconazole drug.  相似文献   

16.
The reaction of AgX (X=ClO4, NO3 or SO3CH3) acceptors with excesses of tris(pyrazol-1-yl)methane ligands L (L=CH(pz)3, CH(4-Mepz)3, CH(3,5-Me2pz)3, CH(3,4,5-Me3pz)3 or CH(3-Mepz)2(5-Mepz)) yields 1:1 [AgX(L)], 2:1 [Ag(L)2]X or 3:2 [(AgX)2(L)3] complexes. The ligand to metal ratio in all complexes is dependent on the number and disposition of the Me substituents on the azole ring of the neutral ligand and on the nature of the Ag(I) acceptor. All complexes have been characterized in the solid state as well as in solution (medium- and far-IR, 1H and 13C NMR and conductivity determinations) and the solid-state structures of [Ag(NO3){(pz)3CH}](∞/∞) and [Ag{(3,5-Me2pz)3CH}2]NO3 determined by single crystal X-ray studies.  相似文献   

17.
The reaction of pyridine-2-thiol with AgBF4 and AgClO4 in MeCN gave rise to polymeric compounds [{Ag(HPyS)2}2(BF4)2]n (1) and [{Ag(HPyS)2}2(ClO4)2]n (2) (HPyS=pyridine-2-thione), respectively, while the similar reaction of pyridine-2-thiol with AgNO3 resulted in a polymeric compound [{Ag4(HPyS)6}(NO3)4]n (3). X-ray single-crystal diffraction analyses showed that the cations of both 1 and 2 possess a single-metal-atom chain structure but that of 3 is a double-metal-atom chain structure. The difference between 1 (or 2) and 3 showed counterion effect in polymerization of silver-thione compounds. In the presence of water, the treatment of pyridine-2-thiol with AgBF4 in DMF at 0 °C generated a polymeric compound [Ag(SPy)]n (4) (Spy=pyridine-2-thiolate) with graphite-like layered array of silver ions. Compound 4 can convert into its isomer [Ag6(SPy)6]n (5) through soaking in DMF for 1 month. However, the similar reaction of pyridine-2-thiol with AgBF4 in MeCN-H2O (v:v=40:1) at room temperature gave another layered polymeric compound [{Ag5(Spy)4(HPyS)}BF4]n (6). The preparation of 4, 5, and 6 showed that temperature and solvent exert influence on formation of silver-thiolate polymers. The reaction of AgNO3 with K2i-mnt (i-mnt=2,2-dicyanoethene-1,1,-dithiolate) and pyridine-2-thiol gave a polymer [Ag44-i-mnt)2(μ-HPyS)2(μ-HPyS)4/2]n (7) with one-dimensional (1-D) chain structure consisting of Ag4 square planar cluster units linked by 1H-pyridine-2-thione ligand. The treatment of AgNO3 with NaS2CNEt2 and pyridine-2-thiol in DMF resulted in another polymeric compound [Ag43-S2CNEt2)22-SPy)4/2]n (8). The preparation and characterization of these polymeric compounds demonstrated that polymerization of silver(I)-thione and silver(I)-thiolate complexes is tunable through controlling reaction conditions. Semiconducting property studies of 1-8 demonstrated that the electrical conductivity of 4 is 2.04×10−5 S cm−1 at 25 °C and increases as temperature rises, and those of 1-3 and 5-8 are in the range of 1×10−12-1×10−15 S cm−1 at room temperature and independent on the temperature, indicating that 1 is a semiconductor and the others are insulators.  相似文献   

18.
Two copper(II) complexes, [Cu(qsal)Cl](DMF) (1) and [Cu2(qsalBr)2Cl2](DMF) (2), with tridentate Schiff base ligands, 8-(salicylideneamino)quinoline (Hqsal) and 8-(5-bromo-salicylideneamino)quinoline (HqsalBr), respectively, were synthesised and structurally characterized. Each copper(II) ion in the two complexes is in a distorted square pyramidal N2OCl2 environment. Complex 1 exists as a polymeric species via equatorial-apical chloride bridges, whereas 2 is a di-chlorido-bridged dinuclear complex, where each bridging chloride simultaneously occupies an in-plane coordination site on one copper(II) ion and an apical site on the other copper(II) ion. Variable-temperature magnetical susceptibility measurements on the two complexes in the temperature range 2-300 K indicate the occurrence of intrachain ferromagnetic (J = +6.58 cm−1) and intramolecular antiferromagnetical (J = −6.91 cm−1) interactions.  相似文献   

19.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

20.
Reactions of silver(I) nitrate with equimolar amounts of the diphos ligands 1,4-bis(diphenylphosphino)butane (dppb) or 1,2-bis(diphenylphosphino)ethane (dppe) and some heterocyclic thiones (L) in acetonitrile/methanol solvent afforded mixed-ligand complexes, the nature of which was found to be strongly influenced by the backbone length of the diphosphine ligand. The longer chained diphos ligand formed a series of dinuclear complexes of the type [Ag(dppb)(L)]2(NO3)2 with both the diphosphine and thione ligands acting as bridging ligands between the two four-coordinate pseudo-tetrahedrally coordinated metal centers. In the unique case of L=4-methyl-5-trifluoromethyl-4H-1,2,4-triazoline-3(2H)-thione (mftztH), the reaction proceeded under exclusion of the thione ligand from the coordination sphere and coordination of the nitrate anions instead, leading to the diphosphine-doubly bridged dimeric compound [Ag(dppb)(NO3)]2. On the other hand, the complexes produced when using the short bite 1,2-bis(diphenylphosphino)ethane (dppe) turned out to be diphosphine-bridged cationic polymers of the type [Ag(dppe)(L)2]n(NO3)n. The structures of one representative for each of the two aforementioned series of complex compounds, namely [Ag(dppb)(py2SH)]2(NO3)2 · 2H2O and [Ag(dppe)(pymtH)2]n(NO3)n, have been established by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号