首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of platinum(II) complexes with ammine or 1R,2R-diaminocyclohexane as carrier ligands and 1-(methoxy-substituted benzyl) azetidine-3,3-dicarboxylate as leaving groups were synthesized and spectrally characterized. Biological evaluation in vitro showed that some of compounds showed positive antitumor activity. In particular, complex 3a, (1R,2R-diaminocyclohexane)[1-(3-methoxylbenzyl) azetidine-3,3-dicarboxylato)-O,O'] platinum(II), possessed a potent antitumor effect comparable to cisplatin and/or oxaliplatin, and very low toxicity in vivo. Preliminary antitumor mechanism of 3a has been investigated by cell apoptosis assays compared with cisplatin and oxaliplatin.  相似文献   

2.
Six dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,4-phenylenebis(methylene))dicyclohexane-1,2-diamine, have been designed, synthesized and characterized. In vitro cytotoxicity evaluation of these metal complexes against human A549, HCT-116, MCF-7 and HepG-2 cell lines have been carried out. All compounds showed antitumor activity to HepG-2, HCT-116 and A549. Particularly, compounds A1 and A2 exhibited significant better activity than other four compounds and A2 even showed comparable cytotoxicity to cisplatin against HepG-2 cell line.  相似文献   

3.
A new chiral ligand, 2-(((1R,2R)-2-aminocyclohexyl)amino)acetic acid (HL), was designed and synthesized to prepare a series of novel dinuclear platinum(II) complexes with dicarboxylates or sulfate as bridges. The evaluation of these metal complexes in vitro cytotoxicity against human HCT-116, MCF-7 and HepG-2 cell lines were made. All compounds showed antitumor activity to HCT-116 and MCF-7. Particularly, compounds M3 and M5 not only exhibited better activity than carboplatin against MCF-7 and HepG-2, but also showed very close activity to oxaliplatin against HCT-116.  相似文献   

4.
The aim of this study was to synthesize and evaluate plasmid DNA interaction of new platinum(II) complexes with some 2-substituted benzimidazole derivatives as carrier ligands which may have potent anticancer activity and low toxicity. Twelve benzimidazole derivatives carrying indole, 2-/or 3-/or 4-methoxyphenyl, 4-methylphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 3,4,5-trimethoxystyryl, 3,4,5-trimethoxybenzylthio or dimethylamino ethyl groups in their position 2 and twelve platinum(II) complexes with these carrier ligands were synthesized. The chemical structure of the platinum complexes have been characterized by their elemental analysis and FIR, 1H NMR and mass spectra and their 1H NMR and FIR spectra were interpreted by comparison with those of the ligands. The interaction of all the ligands and their complexes with plasmid DNA and their restriction endonuclease reactions by BamHI and HindIII enzymes were studied by agarose gel electrophoresis. It was determined that complex 1 [dichloro-di(2-(1H-indole-3-yl)benzimidazole)platinum(II)·2H2O] has stronger interaction than carboplatin and complex 10 [dichloro-di(2-(3,4,5-trimethoxystyryl)benzimidazole)platinum(II)·2H2O] has stronger interaction than both carboplatin and cisplatin with plasmid DNA.  相似文献   

5.
《Inorganica chimica acta》1988,151(4):249-253
A series of water-soluble N-substituted iminodiacetato (diammine)platinum(II) complexes [Pt(NRIDA)(NH3)2] have been synthesized and characterized by measurement of physical properties (conductivity and pH) and by various spectroscopic techniques (infrared, 1H and 13C{1H} nuclear magnetic resonance). The iminodiacetate ligand is coordinated to platinum through an O,N linkage. The results obtained suggest that these complexes are relatively stable for more than 24 h in aqueous solution. Preliminary in vitro and in vivo screening test for antitumor activity of these complexes against L1210 murine leukemia were performed. Many of complexes had acceptable in vitro cytotoxicity, but none displayed a significant level of in vivo antitumor efficacy.  相似文献   

6.
A series of novel cisplatin-type platinum complexes were designed, characteristic of epoxysuccinates as leaving groups. The pertinent compounds were prepared and characterized by IR, (1)H NMR, and ESI-MS spectra with elementary analyses. The in vitro cytotoxic activities of compounds toward SPC-A1 human lung adenocarcinoma cell line and BGC823 human stomach adenocarcinoma cell line were determined. Biological tests have confirmed that complexes containing 4R,5R-DMID [abbreviation of (4R,5R)-4,5-bis (aminomethyl)-2-isopropyl-1,3-dioxolane] as carrier ligands have greater cytotoxicity toward tumor cells than the corresponding compounds with other carrier ligands. Most platinum complexes with trans-epoxysuccinates usually have higher cytotoxicity than those with cis-epoxysuccinates. Complex 4a shows the most effective among those tested platinum complexes in both cell lines, and its cytotoxicity approached that of cisplatin.  相似文献   

7.
Hitherto, it has been generally accepted as a paradigm of the biochemical pharmacology of platinum antitumor drugs that a cis configuration of the leaving groups is necessary for antitumor activity of platinum compounds. However, it has been recently observed that certain trans-platinum complexes have both in vitro and in vivo antitumor activity. We previously reported the synthesis, characterization and cytotoxic activity against ras-transformed cells of several trans-[PtCl2LL'] complexes where L and L' are asymmetric aliphatic amines (L = dimethylamine and butylamine, L' = isopropylamine). The results reported in this paper show that the compounds trans-[PtCl2(isopropylamine)(dimethylamine)] and trans-[PtCl2(isopropylamine)(butylamine)] kill Pam 212-ras cisplatin resistant cells through apoptosis induction. Moreover, Western blot data show that both compounds inhibit overexpression of H-ras oncogene in Pam 212-ras cells. Altogether, these data indicate that, in contrast with cis-DDP, the apoptotic activity of these novel trans-Pt(II) compounds in ras-transformed cells is associated with their ability to abolish ras-overexpression.  相似文献   

8.
The uptake kinetics of cisplatin analogs of 1,2-cyclohexanediamine(dach) isomers with various leaving groups, by human erythrocytes in plasma isotonic buffer, were studied. The experimental results showed that the uptake rate constants (k values) decrease with the change of leaving group in the sequence: chloride (Cl) > squaric acid (SA) > oxalate (OX) > demethylcantharic acid (DA), with the same dach isomer as carrier group. It is noteworthy that for the platinum (II) complexes with the same leaving group, the k values always reduce as: 1R, 2R-dach > 1R, 2S-dach > 1S, 2S-dach. This result reflects the chirality selectivity. No differences in reactivity to protein thiols and effects on membrane permeability were found for the R,R-, R,S-, S,S-isomeric complexes. It is proposed that the chirality selectivity in uptake is due to the recognition of the chirality of the platinum complexes by the erythrocyte membrane. The interactions between the chiral platinum complexes and the head groups of the membrane phospholipid molecules are probably involved.  相似文献   

9.
A new anticancer-active platinum(II) compound [Pt(A9pyp)(dmso)(cbdca)], containing the E-1-(9-anthryl)-3-(2-pyridyl)-2-propenone ligand (abbreviated as A9pyp) has been synthesized by the replacement of the anionic chloride ligands in cis-[Pt(A9pyp)(dmso)Cl2] by the dianionic chelating cyclobutanedicarboxylate ligand (abbreviated as cbdca). The in vitro relevance of the leaving group of these new platinum(II) compounds has been investigated. Measurements of the time-dependent intracellular accumulation of both compounds in human ovarian carcinoma cell lines show that the leaving group affects their cellular uptake. In addition, the leaving group also influences DNA platination, and, therefore, has an effect on the biological activity against a pair of human ovarian carcinoma cell lines, i.e. sensitive and resistant to cisplatin.  相似文献   

10.
The aim of this study was synthesis of two new water-soluble fluorescent palladium and platinum complexes with formulas of [Pt(DACH)(FIP)](NO3)2 and [Pd(DACH)(FIP)](NO3)2, respectively, where FIP is 2-(furan-2-yl)-1H-imidazo[4,5-f][1,10] phenanthroline and DACH is 1R,2R-diaminocyclohexane. Fluorescence spectroscopy, circular dichroism (CD), thermal denaturation measurement, ionic strength, and kinetic study displayed groove binding of Pt complex on DNA, while due to binding of Pd complex, B form of DNA convert to Z form. Due to electrostatic interaction of Pd complex with DNA, the DNA form is converted and it provides enough space for Pd complex to insert between base stacking of DNA. UV–vis study shows two complexes could denature the DNA at low concentrations in exothermic process and Pt complex is more active than Pd complex. Finally, the anticancer and growth inhibitory activities of synthesized complexes were investigated against human colon cancer cell line HCT116 after incubation time of 24 h using MTT assay and higher activity was observed for the platinum complex. Interaction of the two metal derivative complexes was studied by molecular docking and molecular dynamics simulation. The results showed that Pt complexes have higher negative docking energy and higher tendency for interaction with DNA, and exert more structural change on DNA.  相似文献   

11.
In 1977, Gale and associates reported the synthesis and antitumor activity of a series of Pt(II) complexes containing 1,2-diaminocyclohexane as the ligand. Certain of these complexes showed superior activity and greater water solubility compared to cis-Pt(NH3)2Cl2 complexes (“Neoplatin”). In this paper we report the synthesis and antitumor activity of some 40 new water soluble platinum(II) and platinum(IV) complexes. The following classes of the cis-Pt(L)Cl2 complexes were obtained, where L = 1,2-diaminocyclohexane: (a) cis-Pt(L)(X), where X is a derivative of homophthalic acid or a derivative of 1,3-benzendicarboxylic acid, (b) cis-Pt(L)(X)(OH)2 and cis-Pt(L)(X)(Cl)2 complexes, where L and X are the above-mentioned ligands, (c) cis-Pt(L)(X)2 complexes where X is the monoanion of an organic xanthate or dithiocarbamate and L = 1,2-diaminocyclohexane, (d) their corresponding Pt(IV) analogues, Pt(L)(X)2(OH)2 and Pt(L)(X)2(Cl)2. All complexes were assayed against P388 tumors and/or KB cell-bearing mice. The observed antitumor activities were correlated with the structures and spectra of the complexes as well as with the results of EHMO calculations performed on the leaving ligand molecules. A number of the most active complexes were also tested for activity against ADJ/PC6 Yoshida and S-180 tumors in vivo.  相似文献   

12.
A simple biochemical phage induction assay (BIA) showed significant activity with 90% of the antitumor platinum compounds tested and lack of activity for all Pd(II) compounds and Pt(II) cationic complexes, compounds that are expected to be inactive. Structure-activity relationships for a large number of chemicals can be studied simultaneously by this simple, rapid, inexpensive and quantitative biochemical assay. Fifty-three platinum complexes were tested, including a number of ethylenediamines synthesized for this work. The magnitude of inducing activity varied over a 25-fold range; differences among analogs reflected structural differences in a chemically consistent manner. Seven platinum complexes showed greater activity than that of cis-diamminedichloroplatinum(II) (cisplatin, cis-DDP), while other compounds appeared to be substantially less toxic. The assay was predictive for most compounds with very high or very low activity in vivo against L1210. For compounds with intermediate levels of activity, no correlation between inducing and antitumor activity was observed.  相似文献   

13.
Palladium(II) complexes are potential antitumor metallodrugs for their chemical resemblance to platinum(II) complexes. Two palladium(II) complexes (1 and 2) in the formula of [PdLnCl] [L1 = N-(tert-butoxycarbonyl)-l-methionine-N′-8-quinolylamide, L2 = L-alanine-N′-8-quinolylamide] have been synthesized accordingly. The structures of the complexes were fully characterized by X-ray crystallography. The palladium(II) center in 1 is coordinated by two N atoms and an S atom from L1 with one chloride anion as the leaving group; while that in 2 is coordinated by three N atoms from L2 with one chloride anion as the leaving group. The interaction between complex 1 and human serum albumin (HSA) has been investigated using fluorescence and circular dichroism spectroscopies. The complex seems to react with HSA chiefly through hydrophobic and electrostatic interactions, and it does not alter the α-helical nature of HSA. The cytotoxicity of these complexes has been tested against the human cervical cancer (HeLa), human mammary cancer (MCF-7), and human lung cancer (A-549) cell lines. Complex 1 displays a cytotoxic activity comparable to that of cisplatin, but complex 2 is less active than cisplatin.  相似文献   

14.
The gold(I) mixed-ligand complexes involving O-substituted derivatives of 9-deazahypoxanthine (HLn) and triphenylphosphine (PPh3) with the general formula [Au(Ln)(PPh3)] (1–5) were prepared and thoroughly characterized by elemental analysis, FT-IR and multinuclear NMR spectroscopy, ESI+ mass spectrometry, single crystal X-ray (HL5 and complex 2) and TG/DTA analyses. Complexes 1–5 were evaluated for their in vitro antitumor activity against nine human cancer lines, i.e. MCF7 (breast carcinoma), HOS (osteosarcoma), A549 (adenocarcinoma), G361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) and THP-1 (monocytic leukaemia), for their in vitro anti-inflammatory activity using a model of LPS-activated macrophages, and for their in vivo antiedematous activity by λ-carrageenan-induced hind paw edema model on rats. The results showed that the complexes 1–5 exhibit selective in vitro cytotoxicity against MCF7, HOS, 22Rv1, A2780 and A2780R, with submicromolar IC50 values for 2 against the MCF7 (0.6 µM) and HOS (0.9 µM). The results of in vitro cytotoxicity screening on primary culture of human hepatocytes (HEP220) revealed up to 30-times lower toxicity of compounds against healthy cells as compared with cancer cells. Additionally, the complexes 1–5 significantly influence the secretion and expression of pro-inflammatory cytokines TNF-α and IL-1β by a similar manner as a commercially used anti-arthritic drug Auranofin. The tested complexes also significantly influence the rate and overall volume of the edema, caused by the intraplantar application of λ-carrageenan polysaccharide to rats. Based on these promising results, the presented compounds could qualify to become feasible candidates for advanced testing as potential antitumor and anti-inflammatory drug-like compounds.  相似文献   

15.
《Inorganica chimica acta》1988,152(3):151-157
Using the semi-empirical all-valence method (GRINDOL) (recently modified and extended to transition series elements), electronic structure and intermolecular interactions of the model antitumor Pt(II) compounds with guanine and thioguanine have been calculated. Several possible models of antitumor action of platinum compounds are discussed. It is concluded that cis-Pt(II) complexes with guanine form stable intrastrand N7N7 cross-links (but chelation to the O6 atom is also possible). The trans-isomers of platinum(II) exclusively form interstrand cross-links, but the cis-Pt(II) complexes with thioguanine form almost entirely the N7S five-membered chelates.  相似文献   

16.
Five dinuclear platinum(II) complexes with a novel chiral ligand, 2-(((1R,2R)-2-aminocyclohexylamino)methyl)phenol (HL), were designed, prepared and spectrally characterized. In vitro cytotoxicity of all the resulting platinum(II) compounds was evaluated against human HEPG-2, A549 and HCT-116 cell lines, respectively. Results indicated that all compounds showed positive biological activity. Particularly, compound D4 has lower IC50 values than carboplatin toward HEPG-2 and A549, while compound D5 shows better activity than carboplatin against A549.  相似文献   

17.
Imino ligands have proven to be able to activate the trans geometry of platinum(II) complexes towards antitumor activity. These ligands, like aromatic N-donor heterocycles, have a planar shape but, different from the latter, have still an H atom on the coordinating nitrogen which can be involved in H-bond formation. Three classes of imino ligands have been extensively investigated: iminoethers (HN=C(R)OR′), ketimines (HN=CRR′), and amidines (HN=C(R)NR′R″). The promising efficacy of the platinum compounds with amidines (activity comparable to that of cisplatin for cis complexes and much greater than that of transplatin for trans complexes) prompted us to extend the investigation to amidine complexes with a bulkier organic residue (R = t-Bu). The tert-butyl group can confer greater affinity for lipophilic environments, thus potentiating the cellular uptake of the compound. In the present study we describe the synthesis and characterization of pivaloamidine complexes of platinum(II), (cis and trans-[PtCl2(NH3){Z-HN=C(t-Bu)NH2}] and cis and trans-[PtCl2{Z-HN=C(t-Bu)NH2}2]), platinum(III) ([Pt2Cl4{HN=C(t-Bu)NH}2(NH3)2]), and platinum(IV) (trans-[PtCl4(NH3){Z-HN=C(t-Bu)NH2}] and trans-[PtCl4{Z-HN=C(t-Bu)NH2}2]). The cytotoxicity of all new Pt complexes was tested toward a panel of cultured cancer cell lines, including cisplatin and multidrug resistant variants. In addition, cellular uptake and DNA binding, perturbations of cell cycle progression, induction of apoptosis, and p53 activation were investigated for the most promising compound trans-[PtCl2(NH3){Z-HN=C(t-Bu)NH2}]. Remarkably, the latter complex was able to overcome both acquired and intrinsic cisplatin resistance.  相似文献   

18.
Tetraarylporphyrins of the Ar:Ar′ = 3:1-type were synthesized from pyrrole, 4-hydroxybenzaldehyde and benzaldehydes substituted with ethyleneglycol, hydroxy and quaternary ammonium substituents for solubilization in DMF and, in particular, in water. After etherification with the tosylate of diethyl cyclobutanedicarboxylate and subsequent ester hydrolysis, the resulting carboxylic acid groups were used to bind platinum fragments bearing two ammonia and (RR/SS)-trans-1,2-diaminocyclohexane ligands, respectively, as non-leaving groups. In comparison to hematoporphyrin-platinum complexes, the title compounds show a 30 nm bathochromic shift of their absorption bands increasing the penetration depth of the red light used for irradiation in photodynamic tumor therapy. The antiproliferative activity of 24 new platinum complexes differing in the porphyrin ligands and the platinum fragments were studied in tests with J82 bladder cancer cells. The compounds showed the cytotoxic effect of the platinum moiety and after irradiation the phototoxic effect of the porphyrin system.  相似文献   

19.
When antitumor platinum drugs react with DNA they form various types of intrastrand and interstrand cross-links (CLs). One class of new antitumor platinum compounds comprises bifunctional PtII compounds based on the dinuclear or trinuclear geometry of leaving ligands. It has been shown that the DNA-binding modes of dinuclear or trinuclear bifunctional PtII agents are distinct from those of mononuclear cisplatin, forming markedly more intramolecular interstrand CLs. However, at least two types of DNA interstrand cross-linking by bifunctional PtII complexes can be envisaged, depending on whether the platinum complex coordinates to the bases in one DNA molecule (intramolecular interstrand CLs) or in two different DNA duplexes (interduplex CLs). We hypothesized that at least some antitumor bifunctional poly(di/tri)nuclear complexes could fulfill the requirements placed on interduplex DNA cross-linkers. To test this hypothesis we studied the interduplex cross-linking capability of a representative of antitumor polynuclear agents, namely, dinuclear PtII complex [{trans-PtCl(NH3)2}2-μ-{trans-(H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (BBR3535). The investigations were conducted under molecular crowding conditions mimicking environmental conditions in the cellular nucleus, namely, in medium containing ethanol, which is a commonly used crowding agent. We found with the aid of native agarose gel electrophoresis that the DNA interduplex cross-linking efficiency of BBR3535 under molecular crowding conditions was remarkable: the frequency of these CLs was 54%. In contrast, the interduplex cross-linking efficiency of mononuclear cisplatin or transplatin was markedly lower (approximately 40-fold or 18-fold, respectively). We suggest that the production of interduplex CLs in addition to other DNA intramolecular adducts may provide polynuclear PtII compounds with a wider spectrum of cytotoxicity.  相似文献   

20.
A series of N,N′‐dibisphosphonate‐containing 1,3‐propanediamine derivatives ( L1 – L6 ) and their corresponding dichloridoplatinum(II) complexes ( 1 – 6 ) have been synthesized and characterized by elemental analysis, 1H‐NMR, 13C‐NMR, 31P‐NMR and HR‐MS spectra. The in vitro antitumor activities of compounds L1 – L6 and 1 – 6 were tested by WST‐8 assay with Cell Counting Kit‐8, indicating that platinum‐based complexes 1 – 6 showed higher cytotoxicity than corresponding ligands L1 – L6 against A549 and MG‐63, especially complex 2 which displayed comparable cytotoxicity to those of cisplatin and zoledronate after 48 h incubation. In addition, complexes 1 – 6 were more active in vitro on osteosarcoma cell line MG‐63 than normal osteoblast cell line hFOB 1.19. The structure‐activity relationship has been summarized based on the in vitro cytotoxicity of three series of platinum complexes from this and our previous studies. The in vitro bone affinity of platinum complexes was also tested by hydroxyapatite (HAP) chromatography in terms of capacity factor K′. Besides, in this paper, representative complex 2 , which has been proved to be a promising antitumor agent with high cytotoxicity and bone HAP binding property, was investigated for its mechanism of action producing cell death against MG‐63.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号