首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photochemical behavior of a series of trans-[Ru(NH3)4L(NO)]3+ complexes, where L=nitrogen bound imidazole, L-histidine, 4-picoline, pyridine, nicotinamide, pyrazine, 4-acetylpyridine, or triethylphosphite is reported. In addition to ligand localized absorption bands (<300 nm), the electronic spectra of these complexes are dominated by relatively low intensity bands assigned as ligand field (LF) and metal to ligand (dπ → NO) charge transfer (MLCT) transitions. Irradiation of aqueous solutions of these complexes with near-UV light (300-370 nm) labilizes NO, i.e.,
  相似文献   

2.
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py=pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2h of incubation. The complex with concentrations lower than 1x10(-4)M did not show toxicity in B16-F10 murine cells. The complex in solution is toxic at higher concentrations (>1x10(-3)M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by irradiation with light only.  相似文献   

3.
Two ruthenium(II) complexes with polypyridyl, Ru(bipy)2(phen)](ClO4)2·H2O (1) and [Ru(bipy)2(Me-phen)](ClO4)2 (2), (phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, Me-phen = 5-methyl-1,10-phenanthroline), were synthesized and characterized by IR, MS and NMR spectra. Their structures were determined by single crystal X-ray diffraction techniques. The strong steric interaction between the polypyridyl ligands was relieved neither by the elongation of the Ru---N bonds nor increase of the N---Ru---N bite angles. The coordination sphere was distorted to relieve the ligand interaction by forming specific angles (δ) between the polypyridyl ligand planes and coordination planes (N---Ru---N), and forming larger twisted angles between the two pyridine rings for each bipy. The bond distances of Ru---N(bipy) and Ru---N(phen) were virtually identical with experimental error, as expected of π back-bonding interactions which statistically involve each of the ligands present in the coordination sphere.  相似文献   

4.
Irradiation of trans-[RuCl(cyclam)(NO)](2+), cyclam is 1,4,8,11-tetraazacyclotetradecane, at pHs 1-7.4, with near UV light results in the release of NO and formation of trans-[Ru(III)Cl(OH)(cyclam)](+) with pH dependent quantum yields (from approximately 0.01 to 0.16 mol Einstein(-1)) lower than that for trans-[RuCl([15]aneN(4))(NO)](2+), [15]aneN(4) is 1,4,8,12-tetaazacyclopentadecane, (0.61 mol Einstein(-1)). After irradiation with 355 nm light, the trans-[RuCl([15]aneN(4))(NO)](2+) induces relaxation of the aortic ring, whereas the trans-[RuCl(cyclam)(NO)](2+) complex does not. The relaxation observed with trans-[RuCl([15]aneN(4))(NO)](2+) is consistent with a larger quantum yield of release of NO from this complex.  相似文献   

5.
The photochemical and pharmacological studies of the novel [Ru(L)(tpy)NO]3+ L = bpy (2,2′-bipyridine), NH · NHq (quinonediimine) and NH2.NH2cat (o-phenylenediamine) were investigated in aqueous medium. The synthesized nitrosyl ruthenium complexes showed nitric oxide (NO) release under light irradiation at 355 nm for [Ru(L)(tpy)NO]3+ complex with quantum yield of 0.14 ± 0.02, 0.47 ± 0.03 and 0.46 ± 0.02 mol Einstein−1 for L = bpy, NH · NHq and NH2 · NH2cat, respectively, and 0.0065 ± 0.001 mol Einstein−1 for light irradiation at 532 nm for [Ru(NH · NHq)(tpy)NO]3+ complex. The photochemical pathway at 355 nm light irradiation was described as a multi-step mechanism, although at 532 nm it was better attributed to a photo-induced electron transfer. The vasorelaxation induced by NO release produced by light irradiation in visible region from physiological solution of [Ru(NH · NHq)(tpy)NO]3+ complex was evaluated and compared with sodium nitroprusside (SNP). The results showed very similar vasodilator power between both species.  相似文献   

6.
The dichlorobis(2-phenylazopyridine)ruthenium(II) complexes, [Ru(azpy)(2)Cl(2)], are under renewed investigation due to their potential anticancer activity. The three most common isomers alpha-, beta- and gamma-[RuL(2)Cl(2)] with L= o-tolylazopyridine (tazpy) and 4-methyl-2-phenylazopyridine (mazpy) (alpha indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual cis, trans, cis positions, beta indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual cis, cis, cis positions, and gamma indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual trans, cis, cis positions) are synthesized and characterized by NMR spectroscopy. The molecular structures of gamma-[Ru(tazpy)(2)Cl(2)] and alpha-[Ru(mazpy)(2)Cl(2)] are determined by X-ray diffraction analysis. The IC(50) values of the geometrically isomeric [Ru(tazpy)(2)Cl(2)] and [Ru(mazpy)(2)Cl(2)] complexes compared with those of the parent [Ru(azpy)(2)Cl(2)] complexes are determined in a series of human tumour cell lines (MCF-7, EVSA-T, WIDR, IGROV, M19, A498 and H266). These data unambiguously show for all complexes the following trend: the alpha isomer shows a very high cytotoxicity, whereas the beta isomer is a factor 10 less cytotoxic. The gamma isomers of [Ru(tazpy)(2)Cl(2)] and [Ru(mazpy)(2)Cl(2)] display a very high cytotoxicity comparable to that of the gamma isomer of the parent compound [Ru(azpy)(2)Cl(2)] and to that of the alpha isomer. These biological data are of the utmost importance for a better understanding of the structure-activity relationships for the isomeric [RuL(2)Cl(2)] complexes.  相似文献   

7.
Two new ruthenium complexes [Ru(bpy)2(mitatp)](ClO4)21 and [Ru(bpy)2(nitatp)](ClO4)22 (bpy = 2,2′-bipyridine, mitatp = 5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene, nitatp = 5-nitro-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) have been synthesized and characterized by elemental analysis, 1H NMR, mass spectrometry and cyclic voltammetry. Spectroscopic and viscosity measurements proved that the two Ru(II) complexes intercalate DNA with larger binding constants than that of [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and possess the excited lifetime of microsecond scale upon binding to DNA. Both complexes can efficiently photocleave pBR322 DNA in vitro under irradiation. Singlet oxygen (1O2) was proved to contribute to the DNA photocleavage process, the 1O2 quantum yields was determined to be 0.43 and 0.36 for 1 and 2, respectively. Moreover, a photoinduced electron transfer mechanism was also found to be involved in the DNA cleavage process.  相似文献   

8.
The syntheses of nitrosyl–dimethylsulfoxide–ruthenium(II) complexes with general formula mer-[RuCl3(L)(DMSO)(NO)] (L=DMSO or CD3CN) is reported. The mer-[RuCl3(DMSO)2(NO)] (1) complex was obtained from the reaction of [RuCl3(NO)] with the sulfoxide ligand in acetone. The mer-[RuCl3(CD3CN)(DMSO)(NO)] (2) compound was obtained from mer-[RuCl3(DMSO)2(NO)] maintained in deuterated acetonitrile. These data suggest a slow kinetic reaction due the low lability of the DMSO ligand coordinated to the {RuII–NO+} species. The crystal and molecular structures of (1) and (2) have been determined from X-ray studies. Crystal data: for (1), monoclinic, P21/c, a=8.8340(2) Å, b=12.0230(3) Å, c=13.7064(4) Å, β=114.546(2)°, Z=4, R1=0.0429; for (2), monoclinic, P21/n, a=10.0180(7) Å, b=9.5070(7) Å, c=13.3340(9) Å, β=102.264(4)°, Z=4, R1=0.0472. The spectroscopic characterization of (1), in solid state (infrared spectrum) and in solution (nuclear magnetic resonance and cyclic voltammetry) is also described.  相似文献   

9.
The positive ion electrospray mass spectrometry (ESI-MS) of trans-[Ru(NO)Cl)(dpaH)2]Cl2 (dpaH=2,2′-dipyridylamine), obtained from the carrier solvent of H2O–CH3OH (50:50), revealed 1+ ions of the formulas [RuII(NO+)Cl(dpaH)(dpa)]+ (m/z=508), [RuIIICl(dpaH)(dpa)]+ (m/z=478), [RuII(NO+)(dpa)2]+ (m/z=472), [RuIII(dpa)2]+ (m/z=442), originating from proton dissociation from the parent [RuII(NO+)Cl(dpaH)2]2+ ion with subsequent loss of NO (17.4% of dissociative events) or loss of HCl (82.6% of dissociative events). Further loss of NO from the m/z=472 fragment yields the m/z=442 fragment. Thus, ionization of the NH moiety of dpaH is a significant factor in controlling the net ionic charge in the gas phase, and allowing preferential dissociation of HCl in the fragmentation processes. With NaCl added, an ion pair, {Na[RuII(NO)Cl(dpa)2]}+ (m/z=530; 532), is detectable. All these positive mass peaks that contain Ru carry a signature ‘handprint’ of adjacent m/z peaks due to the isotopic distribution of 104Ru, 102Ru, 101Ru, 99Ru, 98Ru and 96Ru mass centered around 101Ru for each fragment, and have been matched to the theoretical isotopic distribution for each set of peaks centered on the main isotope peak. When the starting complex is allowed to undergo aquation for two weeks in H2O, loss of the axial Cl is shown by the approximately 77% attenuation of the [RuII(NO+)Cl(dpaH)(dpa)]+ ion, being replaced by the [RuII(NO+)(H2O)(dpa)2]+ (m/z=490) as the most abundant high-mass species. Loss of H2O is observed to form [RuII(NO+)(dpa)2]+ (m/z=472). No positive ion mass spectral peaks were observed for RuCl3(NO)(H2O)2, ‘caged NO’. Negative ions were observed by proton dissociation forming [RuII(NO)Cl3(H2O)(OH)] in the ionization chamber, detecting the parent 1− ion at m/z=274, followed by the loss of NO as the main dissociative pathway that produces [RuIIICl3(H2O)(OH)] (m/z=244). This species undergoes reductive elimination of a chlorine atom, forming [RuIICl2(H2O)(OH)] (m/z=208). The ease of the NO dissociation is increased for the negative ions, which should be more able to stabilize a RuIII product upon NO loss.  相似文献   

10.
Studies on electronic structures and related properties of [Ru(bpy)2(dpq)]2+ and its 9,9′-substituted derivates are carried out using DFT method at B3LYP/LanL2DZ level. The substituent effects caused by the electron-pushing group (OH) and the electron-withdrawing groups (F) on the electronic structures and its related properties, e.g. the energies and components of some frontier molecular orbitals, the spectral properties, and the net charge populations of some main atoms of the complexes, etc. have been investigated. The computational results show that: first, the substituents have some important effects on the first excited state properties. Both electron-withdrawing group (F) and the electron-pushing group (OH) can all activate the main ligand and passivate the co-ligands in the first excited states of [Ru(bpy)2(9,9′-2R-dpq)]2+, and both can lead to a little red shift in the electronic ground bands of the substitutive derivates, respectively, in particular, the electron-pushing group (OH) can lead to that more. Secondly, the most negative charges are populated on N1 or N5, and the next most negative charges are populated on C8 among all atoms of aromatic ring skeleton. In addition, the substituents have slight effects on coordination-bond lengths of complexes. The above theoretical results should be important to further inquire into the interaction mechanism between the complexes and DNA active units from the interactions between molecular orbitals, or from the interactions between atomic charges.  相似文献   

11.
A theoretical study of the ruthenium(III) complex [RuCl2(pz2CHSO3)(en)] and of its nitrosyl-substituted product [Ru(NO)Cl(pz2CHSO3)(en)]+ is presented, based on density functional calculations. Several isomers of each compound differing in the position of the anionic tail of a bis(3,4-dimethyl-1-yl)methanesulfonate scorpionate ligand, pz2CHSO3, relative to the monodentate ligands have been optimized. A two-step mechanism is proposed for the ligand substitution reaction that is consistent with the computational results and the weak coordination of the sulfonate group.  相似文献   

12.
Two ruthenium nitrosyl bis-pyridyl/biscarboxamido compounds, [Ru(NO)(bpp)Cl · 2H2O] [bpp = N,N′-bis(2-pyridinecarboxamide)-1,3-propane dianion] and [Ru(NO)(bpe)Cl · 2H2O] [bpe = N,N′-(bis-2-pyridinecarboxamide)-1,2-ethane dianion] have been characterized by 1H NMR, 13C{1H} NMR, and IR spectroscopies, electrospray ionizaton mass spectrometry, and X-ray crystallography.  相似文献   

13.
The structural and spectroscopic properties of [Ru(phen)2(dppz)]2+ and [Ru(tap)2(dppz)]2+ (phen = 1,10-phenanthroline; tap = 1,4,5,8-tetraazaphenanthrene; dppz = dipyridophenazine ) have been investigated by means of density functional theory (DFT), time-dependent DFT (TD-DFT) within the polarized continuum model (IEF-PCM) and quantum mechanics/molecular mechanics (QM/MM) calculations. The model of the Δ and Λ enantiomers of Ru(II) intercalated in DNA in the minor and major grooves is limited to the metal complexes intercalated in two guanine-cytosine base pairs. The main experimental spectral features of these complexes reported in DNA or synthetic polynucleotides are better reproduced by the theoretical absorption spectra of the Δ enantiomers regardless of intercalation mode (major or minor groove). This is especially true for [Ru(phen)2(dppz)]2+. The visible absorption of [Ru(tap)2(dppz)]2+ is governed by the MLCTtap transitions regardless of the environment (water, acetonitrile or bases pair), the visible absorption of [Ru(phen)2(dppz)]2+ is characterized by transitions to metal-to-ligand-charge-transfer MLCTdppz in water and acetonitrile and to MLCTphen when intercalated in DNA. The response of the ILdppz state to the environment is very sensitive. In vacuum, water and acetonitrile these transitions are characterized by significant oscillator strengths and their positions depend significantly on the medium with blue shifts of about 80 nm when going from vacuum to solvent. When the complex is intercalated in the guanine-cytosine base pairs the 1ILdppz transition contributes mainly to the band at 370 nm observed in the spectrum of [Ru(phen)2(dppz)]2+ and to the band at 362 nm observed in the spectrum of [Ru(tap)2(dppz)]2+.  相似文献   

14.
A spectroscopic and spectroelectrochemical comparison is made among homo- and heterobimetallic complexes of the form [(bpy)2Ru(BL)Os(byp)2]4+, [(bpy)2Ru(BL)Ru(bpy)2]4+ and [(bpy)2Os(BL)Os(bpy)2]4+ (BL = 2,3,-bis(2′-pyridyl)pyrazzine(dpp),2,3-bis(2′-pyridyl)quinoxaline(dpq) or 2,3-bis(2′-pyridyl)benzoquinoxaline(dpb); bpy = 2,2′-bipyridine). It has been postulated that the spectroscopy of the mixed-metal bimetallic complexes bridged by polyazine bridging ligands can be assigned by comparison to those of the homobimetallic analogs. We have in hand a unique series of complexes where such a postulate can be tested. Utilizing the visible spectra of the homobimetallic Os,Os and Ru,Ru systems, we have been able to generate the spectra of the mixed-metal complexes. Some differences have been seen, particularly in the energy of the Os → dpp 3MLCT. Oxidative spectroelectrochemistry studies on the homobimetallic ruthenium or osmium based systems indicate that upon complete oxidation of both metal centers, transitions in the visible are lost. Hence, partial oxidation of the ruthenium based homobimetallics and Os, Ru mixed-metal bimetallics allows for the direct comparison of the spectroscopic character of the one remaining ruthenium chromophore within these mixed-valence systems. Oxidation to form the Os(III)/Ru(II) species and the Ru(III)/Ru(II) species resulted in similar spectra. This establishes further that the visible spectroscopy of mixed-metal systems of this nature can be accurately interpreted by comparison to the homobimetallic analogs.  相似文献   

15.
Two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline, [Cu(o-phen)(2)(cnge)](NO(3))(2).2H(2)O (1) and [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)] (2), have been synthesized using different experimental techniques and characterized by elemental analyses, FTIR, diffuse and UV-vis spectra and EPR and magnetic moment measurements techniques. The crystal structures of both complexes were solved by X-ray diffraction methods. Complex (1) crystallizes in the monoclinic space group C2/c with a=12.621(5), b=31.968(3), c=15.39(1)A, beta=111.68(4) degrees, and Z=8 and complex (2) in the monoclinic space group P2(1)/n with a=10.245(1), b=13.923(2), c=12.391(2)A, beta=98.07(1) degrees, and Z=4. The environments of the copper(II) center are trigonal bipyramidal (TBP) for [Cu(o-phen)(2)(cnge)](2+) and an elongated octahedron for [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)]. Solution studies have been performed to determine the species distribution. The superoxide dismutase (SOD) activities of both complexes have also been tested in order to determine if these compounds mimic the enzymatic action of the enzyme SOD that protects cells against peroxide radicals.  相似文献   

16.
Inspired by the enormous importance attributed to the structure and function of human telomeric DNA, we focus our attention on the interaction of [Ru(bpy)2(dppz)]2+ with the guanine-rich single-strand oligomer 5′-AGGGTTAGGGTTAGGGTTAGGG-3′ (22AG) and the complementary cytosine-rich strand (22CT). In Na+ buffer, 22AG may adopt an antiparallel basket quadruplex, whereas, it favours a mixed parallel/antiparallel structure in K+ buffer. 22CT may self-associate at acidic pH into an i-motif. In this paper, the interaction between [Ru(bpy)2(dppz)]2+ and each unusual DNA was evaluated. It was interesting that [Ru(bpy)2(dppz)]2+ could promote the human telomeric repeat 22AG to fold into intramolecular antiparallel G-quadruplex without any other cations. What's more, [Ru(bpy)2(dppz)]2+ was found to have a strong preference for binding to G-quadruplexes that were induced through either Na+ or K+, while weak binding to i-motif was observed. The results also indicated that [Ru(bpy)2(dppz)]2+ could serve as a prominent molecular “light switch” for both G-quadruplexes, revealing a potential application of the title complex in luminescent signaling of G-quadruplex DNA.  相似文献   

17.
Abstract

A new Ru(II) complex of [Ru(bpy)2(Hppip)]2+ {bpy = 2,2′-bipyridine; Hppip = 2-(4-(pyridin- 2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)2(Hpip)]2+ {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline}. The acid-base properties of [Ru(bpy)2(Hppip)]2+ studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)2(Hppip)]2+ that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) × 105 M?1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.  相似文献   

18.
Cyclometalation of benzo[h]quinoline (bzqH) by [RuCl(μ-Cl)(η6-C6H6)]2 in acetonitrile occurs in a similar way to that of 2-phenylpyridine (phpyH) to afford [Ru(bzq)(MeCN)4]PF6 (3) in 52% yield. The properties of 3 containing ‘non-flexible’ benzo[h]quinoline were compared with the corresponding [Ru(phpy)(MeCN)4]PF6 (1) complex with ‘flexible’ 2-phenylpyridine. The [Ru(phpy)(MeCN)4]PF6 complex is known to react in MeCN solvent with ‘non-flexible’ diimine 1,10-phenanthroline to form [Ru(phpy)(phen)(MeCN)2]PF6, being unreactive toward ‘flexible’ 2,2′-bipyridine under the same conditions. In contrast, complex 3 reacts both with phen and bpy in MeCN to form [Ru(bzq)(LL)(MeCN)2]PF6 {LL = bpy (4) and phen (5)}. Similar reaction of 3 in methanol results in the substitution of all four MeCN ligands to form [Ru(bzq)(LL)2]PF6 {LL = bpy (6) and phen (7)}. Photosolvolysis of 4 and 5 in MeOH occurs similarly to afford [Ru(bzq)(LL)(MeCN)(MeOH)]PF6 as a major product. This contrasts with the behavior of [Ru(phpy)(LL)(MeCN)2]PF6, which lose one and two MeCN ligands for LL = bpy and phen, respectively. The results reported demonstrate a profound sensitivity of properties of octahedral compounds to the flexibility of cyclometalated ligand. Analogous to the 2-phenylpyridine counterparts, compounds 4-7 are involved in the electron exchange with reduced active site of glucose oxidase from Aspergillus niger. Structure of complexes 4 and 6 was confirmed by X-ray crystallography.  相似文献   

19.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

20.
Ru(S-BINAP) (Acac) (MNAA) (MeOH) (1) (where MNAA (2) = 2-(6′-methoxynaphth-2′-yl)acrylate anion), a highly effective catalyst for the asymmetric hydrogenation of 2-(6′-methoxynaphth-2′-yl) acrylic acid (3), was isolated from a dichloromethane/methanol (vol./vol. = 1/4) solution of Ru(S-BINAP) (Acac)2 and excess of 2-(6′-methoxynaphth-2′-yl)acrylic acid after the solution was exposed to visible light for 2 weeks. On side by side comparison studies, the rate of the hydrogenation of 3 catalyzed by 1 was found to be substantially faster than the same reaction catalyzed by Ru(S-BINAP) (OAc)2. The molecular structure of 1 was unambiguously characterized by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号