首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

2.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

3.
In [PtX(PPh3)3]+ complexes (X = F, Cl, Br, I, AcO, NO3, NO2, H, Me) the mutual cis and trans influences of the PPh3 groups can be considered constants in the first place, therefore the one bond Pt-P coupling constants of P(cis) and P(trans) reflect the cis and trans influences of X. The compounds [PtBr(PPh3)3](BF4) (2), [PtI(PPh3)3](BF4) (3), [Pt(AcO)(PPh3)3](BF4) (4), [Pt(NO3)(PPh3)3](BF4) (5), and the two isomers [Pt(NO2-O)(PPh3)3](BF4) (6a) and [Pt(NO2-N)(PPh3)3](BF4) (6b) have been newly synthesised and the crystal structures of 2 and 4·CH2Cl2·0.25C3H6O have been determined. From the 1JPtP values of all compounds we have deduced the series: I > Br > Cl > NO3 > ONO > F > AcO > NO2 > H > Me (cis influence) and Me > H > NO2 > AcO > I > ONO > Br > Cl > F > NO3 (trans influence). These sequences are like those obtained for the (neutral) cis- and trans-[PtClX(PPh3)2] derivatives, showing that there is no dependence on the charge of the complexes. On the contrary, the weights of both influences, relative to those of X = Cl, were found to depend on the charge and nature of the complex.  相似文献   

4.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

5.
The interaction of an excess of the title ligands L with the cis-Pt(phos)2 moieties gives compounds a-bcis-[Pt(L-O)2(phos)2] (a, phos = P(Ph)3; b, phos = 1/2 dppe), in which O- is preferred to S-coordination. Such preference is confirmed by the fact that the same products are obtained by reaction of excess of L with the previously reported a-d complexes [Pt(L-O,S)(phos)2]+, (c, phos = PPh3, d, phos = 1/2 dppe), for which chelate ring opening occurs with rupture of Pt-S rather than Pt-O bonds. Compound a can be obtained also by oxidative addition of HL to [Pt(PPh3)3]. The Pt-O bonds in compounds a-d are stable towards substitution by Me2SO, pyridine and tetramethylthiourea. Substitution of L’s occurs with N,N′-diethyldithiocarbamate, which forms a very stable chelate with Pt(II). Thiourea and N,N′-dimethylthiourea also react, because they give rise to cyclometallated products [Pt(phos)2(NRC(S)NHR)]+ (R = H, CH3), with one ionised thioamido group, as revealed by an X-ray investigation of [Pt(PPh3)2(NHC(S)NH2)]+. The preference of O versus S coordination, as well as the stability of the Pt-O bonds, are discussed in terms of antisymbiosis.  相似文献   

6.
The reaction of AgX with the diphosphazane ligand, PriN(PPh2)2 (L) gives the polymeric complexes, [Ag2(μ-X)2(μ-L)]n (X = NO31a or OSO2CF31b). Single crystal X-ray analysis of 1a reveals a novel structural motif formed by interlinking of giant 40-membered rings; the diphosphazane ligand L adopts a unique ‘Cs’ geometry. These polymeric complexes exhibit a completely reversible ring-opening polymerization-depolymerization relationship with the dinuclear and mononuclear complexes, [{Ag(μ-L)(X)}2] (X = NO32a, X = OSO2CF32b) and [Ag(κ2-L)2]X (X = NO33a, X = OSO2CF33b).  相似文献   

7.
Two new complex salts of the form (Bu4N)2[Ni(L)2] (1) and (Ph4P)2[Ni(L)2] (2) and four heteroleptic complexes cis-M(PPh3)2(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2NCS2] and cis-M(PPh3)2(L′) [ M = Pd(II) (5), Pt(II) (6), L′ = C6H5SO2NCS2] were prepared and characterized by elemental analyses, IR, 1H, 13C and 31P NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)2(SH)2, 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H?Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with σrt values ∼10−5 S cm−1 show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.  相似文献   

8.
The new diiron alkynyl methoxy carbene complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CCR′}(Cp)2]+ (R = 2,6-Me2C6H3 (Xyl), R′ = Tol, 3a; R = Xyl, R′ = Ph, 3b; R = Xyl, R′=Bun, 3c; R = Xyl, R′=SiMe3, 3d; R = Me, R′ = Tol, 3e; R = Me, R′ = Ph, 3f) are obtained in two steps by addition of R′CCLi (R′ = Tol, Ph, Bun, SiMe3) to the carbonyl aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2]+ (R = Xyl, 1a; Me, 1b), followed by methylation of the resulting alkynyl acyl compounds [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(O)CCR′}(Cp)2] (R = Xyl, R′ = Tol, 2a; R = Xyl, R′ = Ph, 2b; R = Xyl, R′ = Bun, 2c; R = Xyl, R′ = SiMe3, 2d; R = Me, R′ = Tol, 2e; R = Me, R′ = Ph, 2f). Complexes 3 react with secondary amines (i.e., Me2NH, C5H10NH) to give the 4-amino-1-metalla-1,3-dienes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CHC(R′)(NMe2)}(Cp)2]+ (R = Xyl, R′ = Tol, 4a; R = Xyl, R′ = Ph, 4b; R = Me, R′ = Ph, 4c) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(Tol)(NC5H10)}(Cp)2]+, 5. The addition occurs stereo-selectively affording only the E-configured products. Analogously, addition of primary amines R′NH2 (R′ = Ph, Et, Pri) affords the 4-(NH-amino)-1-metalla-1,3-diene complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(R)(NHR′)}(Cp)2]+ (R = Ph, 6a; Et, 6b; Pri, 6c). In the case of 6a, only the E isomer is formed, whereas a mixture of the E and Z isomers is present in the case of 6b,c, with prevalence of the latter. Moreover, the two isomeric forms exist under dynamic equilibrium conditions, as shown by VT NMR studies. Complexes 6 are deprotonated by strong bases (e.g., NaH) resulting in the formation of the neutral vinyl imine complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(NR)(Tol)}(Cp)2] (R = Ph, 7a; Et, 7b; Pri, 7c); the reaction can be reverted by addition of strong acids. X-ray crystal structures have been determined for 3a[CF3SO3] · Et2O, 4c[CF3SO3], 6a[BF4] · CH2Cl2, 6c[CF3SO3] · 0.5Et2O and 7a · CH2Cl2.  相似文献   

9.
Consecutive synthesis methodologies for the preparation of a series of copper(I) formates [LmCuO2CH] (L = nBu3P: 4a, m = 1; 4b, m = 2; 5, L = [Ti](CCSiMe3)2, m = 1, [Ti] = (η5-C5H4SiMe3)2Ti) and [LmCuO2CH·HO2CR] (L = nBu3P: 7a, m = 1, R = H; 7b, m = 2, R = H; 7c, m = 2, R = Me; 7d, m = 2, R = CF3; 7e, m = 2, R = Ph. L = (cC6H11)3P, R = H: 8a, m = 2; 8b, m = 3. L = (CF3CH2O)3P, R = H: 9a, m = 2; 9b, m = 3. L = (CH3CH2O)3P, R = H: 10a, m = 2; 10b, m = 3. L = [Ti](CCSiMe3)2; m = 1: 11a, R = H; 11b, R = Ph) is reported using [CuO2CH] (1) and L (2a, L = nBu3P; 2b, L (cC6H11)3P; 2c, L = (CF3CH2O)3P; 2d, L = (CH3CH2O)3P; 3, L = [Ti](CCSiMe3)2) as key starting materials. Addition of formic acid (6a) or carboxylic acid HO2CR (6b, R = Me; 6c, R = CF3; 6d, R = Ph) to the afore itemized copper(I) formates 4 and 5 gave metal-organic or organometallic 7-11. The molecular structures of 8a and 11a in the solid state are reported showing a threefold coordinated copper(I) ion, setup by either two coordinatively-bonded phosphorus atoms and one formate oxygen atom (8a) or two π-bonded alkyne ligands and one oxygen atom (11a). A formic acid molecule is additionally hydrogen-bonded to the CuO2CH moiety. The use of 7b as suitable precursor for the deposition of copper onto TiN-coated oxidized silicon wafers by the spin-coating process below 300 °C is described. Complex 7b offers an appropriate transformation behavior into metal phase by an elimination-decarboxylation mechanism. The morphology of the copper films strongly depends on the annealing conditions. A closed grain network densified by a post-treatment is obtained (8 °C min−1, N2/H2 carrier gas). Hydrogen post-anneal to 420 °C after film deposition gave a copper film showing resistivities from 2.5 to 3.7 μΩ cm. This precursor was also used for gap-filling processes.  相似文献   

10.
Reaction of cis-[Ru(acac)22-C8H14)2] (1) (acac = acetylacetonato) with two equivalents of PiPr3 in THF at −25 °C gives trans-[Ru(acac)2(PiPr3)2], trans-3, which rapidly isomerizes to cis-3 at room temperature. The poorly soluble complex [Ru(acac)2(PCy3)2] (4), which is isolated similarly from cis-[Ru(acac)22-C2H4)2] (2) and PCy3, appears to exist in the cis-configuration in solution according to NMR data, although an X-ray diffraction study of a single crystal shows the presence of trans-4. In benzene or toluene 2 reacts with PiPr3 or PCy3 to give exclusively cis-[Ru(acac)22-C2H4)(L)] [L = PiPr3 (5), PCy3 (6)], whereas in THF species believed to be either square pyramidal [Ru(acac)2L], with apical L, or the corresponding THF adducts, can be detected by 31P NMR spectroscopy. Complexes 3-6 react with CO (1 bar) giving trans-[Ru(acac)2(CO)(L)] [L = PiPr3 (trans-8), PCy3 (trans-9)], which are converted irreversibly into the cis-isomers in refluxing benzene. Complex 5 scavenges traces of dinitrogen from industrial grade dihydrogen giving a bridging dinitrogen complex, cis-[{Ru(acac)2(PiPr3)} 2(μ-N2)] (10). The structures of cis-3, trans-4, 5, 6 and 10 · C6H14 have been determined by single-crystal X-ray diffraction. Complexes trans- and cis-3, 5, 6, cis-8, and trans- and cis-9 each show fully reversible one-electron oxidation by cyclic voltammetry in CH2Cl2 at −50 °C with E1/2(Ru3+/2+) values spanning −0.14 to +0.92 V (versus Ag/AgCl), whereas for the vinylidene complexes [Ru(acac)2 (CCHR)(PiPr3)] [R = SiMe3 (11), Ph (12)] the process is irreversible at potentials of +0.75 and +0.62 V, respectively. The trend in potentials reflects the order of expected π-acceptor ability of the ligands: PiPr3, PCy3 <C 2H4 < CCHR < CO. The UV-Vis spectrum of the thermally unstable, electrogenerated RuIII-ethene cation 6+ has been observed at −50 °C. Cyclic voltammetry of the μ-dinitrogen complex 10 shows two, fully reversible processes in CH2Cl2 at −50 °C at +0.30 and +0.90 V (versus Ag/AgCl) corresponding to the formation of 10+ (RuII,III) and 102+ (RuIII,III). The former, generated electrochemically at −50 °C, shows a band in the near IR at ca. 8900 cm−1 (w1/2 ca. 3700 cm−1) consistent with the presence of a valence delocalized system. The comproportionation constant for the equilibrium 10 + 102+ ? 2 10+ at 223 K is estimated as 1013.6.  相似文献   

11.
Four organotin(IV) complexes with general formula [RSnCln−1(TCB)] [R = Ph2, n = 2 (2); R = Me, n = 3 (3); R = Bu, n = 3 (4); R = Ph, n = 3 (5)] have been synthesized by direct reaction of thiophene-2-carboxaldehyde benzhydrazone ligand [HTCB, (1)], base and organotin(IV) chloride in absolute methanol under N2 atmosphere. All organotin(IV) complexes were characterized by elemental analyses, molar conductivity, UV-Vis, FT-IR, 1H and 13C NMR spectral studies. Among them, diphenyltin(IV) complex (2) has also been characterized by X-ray crystallography diffraction analyses. The cytotoxicity of the hydrazone ligand as well as its organotin(IV) complexes (2-5) were determined with Artemia salina. While no-choice bioassay was employed on Coptotermes sp. to evaluate the termiticidal effect of all the complexes. Besides, the ligand (1) and its organotin(IV) complexes (2-4) were also tested against five types of bacteria namely Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi.  相似文献   

12.
Reaction between the binuclear hydroxo complex cis-[(PPh3)2Pt(μ-OH)]2X2 (X = NO3, 1a; , 1b) and the model DNA base 9-methyladenine (9-MeAd) leads to the formation of the mononuclear species cis-[(PPh3)2Pt{9-MeAd(-H),N6N7}]X (X = NO3, 2a; PF6, 2b), in which the nucleobase chelates the Pt(II) ion with the N6 and N7 atoms. The coordination mode of the nucleobase has been determinated through a multinuclear (1H, 31P, 13C, 15N and 195Pt) NMR analysis and the nuclearity of the complex has been obtained by E.S.I. mass spectrometry. 2 represents the first example of an isolated platinum complex in which the NH2-deprotonated adenine exhibits this binding mode.  相似文献   

13.
Complexes cis,trans-Fe(CO)2(PMe3)2RR′ (R = CH3, R′ = Ph (2); R = CH3, R′ = CHCH2 (3); R = CHCH2, R′ = Ph (4); R = R′ = CHCH2 (5); R = R′ = CH3 (6)) were prepared by reaction of cis,trans-Fe(CO)2(PMe3)2RCl (1) with organolithium reagents LiR′. All complexes were characterized in solution by IR and 1H, 31P and, in a few cases, 13C NMR mono- and bi-dimensional spectroscopies. Complexes 5 and 6 were structurally characterized by X-ray diffractometric methods. In solution complexes 2, 3 and 4 undergo slowly coupling of the σ-hydrocarbyl substituents leading to Fe(CO)3(PMe3)2 and other decomposition products. Complex 6 was very stable in solution in the absence of nucleophiles and in the solid state. Complex 5 transformed through intramolecular coupling of the vinyl groups into Fe(CO)(PMe3)24-butadiene) (7), which was characterized in solution by IR and NMR spectroscopies.  相似文献   

14.
The silver(I) salts [AgOR] (3a, R = C9H6N; 3b, R = C6H4-2-CHO, 3c, R = C6H4-2-Cl; 3d, R = C6H4-2-CN; 3e, R = C6H4-2-NO2) are accessible by the stoichiometric reaction of [AgNO3] (1) with HOR (2a, R = C9H6N; 2b, R = C6H4-2-CHO; 2c, R = C6H4-2-Cl; 2d, R = C6H4-2-CN; 2e, R = C6H4-2-NO2) in presence of NEt3. Treatment of 3a-3e with PnBu3 (4), P(OMe)3 (5a) or P(OCH2CF3)3 (5b) in the ratios of 1:1 and 1:2, respectively, produced complexes [LmAgOR] (L = PnBu3, = 1: 6a, R = C9H6N; 6b, R = C6H4-2-CHO; 6c, R = C6H4-2-Cl; 6d, R = C6H4-2-CN; 6e, R = C6H4-2-NO2. = 2: 7a, R = C9H4; 7b, R = C6H4-2-CHO; 7c, R = C6H4-2-Cl; 7d, R = C6H4-2-CN; 7e, R = C6H4-2-NO2. L = P(OMe)3, = 1: 8a, R = C6H4-2-CHO; 8b, R = C6H4-2-NO2. = 2: 9, R = C6H4-2-NO2. L = P(OCH2CF3)3, = 1: 10, R = C6H4-2-NO2). Based on TGA, temperature-programmed and in situ molecular beam mass spectrometry metal-organic 7e was applied as CVD precursor in the deposition of silver onto glass substrates. The resulting silver films were characterized by XRD. The SEM image of a film grown from 7e at 350 °C showed a homogeneous surface with grain sizes of 40 nm. The molecular structures of 8b and 10 in the solid state were determined. They are isostructural and are cubane-like structured. Low-temperature 31P{1H} NMR studies showed that the title complexes are dynamic in solution and exchange at room temperature their ligands.  相似文献   

15.
The reactivity of hybrid scorpionate/cyclopentadienyl ligand-containing trichloride zirconium complexes [ZrCl3(bpzcp)] (1) [bpzcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl] and [ZrCl3(bpztcp)] (2) [bpztcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethylcyclopentadienyl] toward several lithium alkoxides has been carried out. Thus, alkoxide-containing complexes [ZrCl2(OR)(bpzcp)] (R = Me, 3; Et, 4; iPr, 5; (R)-2-Bu, 6), [ZrCl2(OR)(bpztcp)] (R = Me, 7; Et, 8; iPr, 9; (R)-2-Bu, 10) and [Zr(OR)3(bpztcp)] (R = Et, 11; iPr, 12) were prepared by deprotonation of the appropriate alcohol group with BunLi followed by reaction with 1 or 2. In addition, the imido-complex [Ti(NtBu)Cl(bpztcp)(py)] (13) were also prepared. The structures of these complexes have been proposed on basis of spectroscopic and DFT methods.  相似文献   

16.
New phosphoramidite complexes of ruthenium chiral at the metal were synthesized, structurally characterized and their electrochemical and catalytic properties were studied. Reaction of the known chiral phosphoramidites (R = naphthyl, R′ = CH3, 1a; R = naphthyl, R′ = benzyl, 1b; R = octahydronaphthyl, R′ = benzyl, 1c) with CpRu(PPh3)2Cl afforded the title compounds CpRu(PPh3)(1a-c)(Cl) (2a-c) in 46-74% isolated yields. Fractional crystallization of 2b and 2c afforded the corresponding diastereopure complexes which are chiral both at the metal and at the ligand. The molecular structures of 2b and 2c were determined, revealing a pseudo octahedral coordination geometry about the ruthenium center. Electrochemical studies by cyclic voltammetry showed reversible electrochemical behavior of the metal complexes 2a-c. The new metal complexes are catalytically active in the Mukaiyama aldol reaction (24 h, room temperature, 31-53% yield), but almost no enantiomeric excesses for the products were obtained.  相似文献   

17.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

18.
The complexes of 2-[2-(diphenylphosphoryl)prop-2-yl]-1,8-naphthyridine (L) with lanthanide nitrates Ln(NO3)3 (Ln = Nd, Eu, Lu) were investigated to elucidate the coordination ability of a novel type of potentially tridentate ligands - phosphorylalkyl substituted naphthyridines. The X-ray crystal structures of [NdL3]3+ · 3(NO3) · MeCN (1), [EuL3]3+ · 3(NO3) · [Eu(NO3)3 · 4H2O] · MeCN (2), and [LuL3]3+ · 3(NO3) · [Lu(NO3)3 · 3H2O] · 2 MeCN · 0.5 H2O (3) are reported together with their IR and Raman spectra. All the compounds studied contain isostructural [LnL3]3+ cations and three NO3 counterions. Coordination of each L appears to be O,N,N tridentate-cyclic and coordination number of Ln is nine. Vibrational spectra of 1-3 are also compared with that of free ligand and model compounds.  相似文献   

19.
A series of organotin(IV) complexes with Schiff base ligand pyruvic acid 3-hydroxy-2-naphthoyl hydrazone [R2SnLY]2, L = 3-HO-C10H6-2-CONHNC(CH3)COOH, R = n-C4H9, Y = CH3OH (1), R = n-C4H9, Y = N (2), R = PhCH2 (3), R = Ph, Y = CH3OH (4), R = Me, (5) and [R3SnLY], L = 3-HO-C10H6-2-CONHNC(CH3)COOH, R = n-C4H9, Y = H2O, (6), R = Ph (7), R = Me (8) have been synthesized. These complexes have been characterized by elemental analysis, IR, 1H and 119Sn NMR spectra. The crystal and molecular structure of complexes 1, 2 and 6 have been determined by X-ray single crystal diffraction. Results showed that complex 1 has a dimeric structure and the central tin atom is rendered seven-coordinate in a distorted pentagonal-bipyramid configuration. The complex 2 has a monoclinic structure and the central tin atom is rendered six-coordinate in octahedrally configuration with a planar of SnO3N unit and two apical aryl C atoms. And the whole structure consists of molecular units connected by weak intermolecular Sn?N and O-H?N interactions. In the complex 6, the central tin atom is five-coordinate in distorted trigonal-bipyramidal geometry.  相似文献   

20.
The reaction of imidoyl chlorides [V(NR)Cl3] (R = Ph 1, Tol 2, tBu 3) and calix[4]arene methyl ether H3Mecalix unexpectedly leads to the formation of the structurally characterized vanadium (IV) complex [VCl(Mecalix)] (4). Calix[4]arene methyl ether stabilized imido complexes of the type [V(NR)(Mecalix)] (R = Ph 7, Tol 8, tBu 9) were afforded from the reaction of [V(NR)Cl3] (R = Ph 1, Tol 2, tBu 3) and the tris(lithium) or tris(sodium) salt of the calix[4]arene ether. The lithium salt [{Li3(Mecalix)}2] (5) is a dimer in the solid state, in which two monomeric trianions are bridged by lithium cations. Imido complexes [M(NR)(Mecalix)] (M = Nb: R = tBu, 12, R = Tol 13, R = Mes 14, R = Dipp 15; M = Ta: R = tBu 16, R = Tol 17) (Tol = 4-C6H4Me, Mes = 2,6-C6H3Me2; Dipp = 2,6-C6H3iPr2) have been prepared from structurally characterized [NbCl2(Mecalix)] (10) and previously known [TaCl2(Mecalix)] (11) via reaction with two equivalents of the appropriately metallated (Li, K) primary amine. The molecular structures of 13 and 15 confirm the mononuclear nature of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号