共查询到20条相似文献,搜索用时 0 毫秒
1.
Keye Xu Jun Sun Sisi Chen Yuan Li Xiao Peng Mingcai Li Yan Li 《Biochemical and biophysical research communications》2019,508(1):198-202
Obesity is associated with a chronic inflammatory response. Interleukin (IL)-38 is a poorly characterized cytokine of the IL-1 family with anti-inflammatory activity. The role of IL-38 in obesity-induced inflammation and insulin resistance remains unknown. In this study, we investigated the effects of IL-38 expression by hydrodynamic-based gene delivery on high-fat diet-induced obesity in mice. Transfer of plasmid DNA encoding IL-38 reduced weight gain, liver fat content, adipose tissue weight, and obesity-induced insulin resistance compared with administration of a control plasmid. Moreover, IL-38 gene delivery inhibited the production of inflammatory mediators including IL-1β, IL-6, and monocyte chemotactic protein-1. These results suggest that IL-38 is a potential new target for the treatment of obesity. 相似文献
2.
F344/DuCrj rats are genetically deficient in dipeptidyl peptidase IV (DPPIV). This enzyme degrades glucagon-like peptide-1 (GLP-1), which induces glucose-dependent insulin secretion. Glucose tolerance of F344/DuCrj rats is improved as a result of enhanced insulin release induced by high levels of plasma GLP-1. In this study, we fed F344/DuCrj rats and DPPIV-positive F344/Jcl rats, aged five weeks, on a high-fat (HF) diet to examine the effect of DPPIV deficiency on food intake and insulin resistance. F344/Jcl rats gained significantly more body weight and consumed significantly more food than F344/DuCrj rats from Week 4 on either control or HF diet. Glucose excursion in the oral glucose tolerance test (OGTT) was improved in F344/DuCrj rats fed on the control or HF diet at all times examined, compared with F344/Jcl rats. Homeostasis model assessment (HOMA) insulin resistance values of F344/DuCrj and F344/Jcl rats fed on HF diet were higher than those of animals fed on control diet up to Week 6. However, HOMA insulin resistance values of F344/DuCrj rats fed on HF diet became significantly lower than those of F344/Jcl rats on HF diet during Weeks 8-10. The area under the insulin curve in the OGTT at Week 10 showed that the insulin resistance of HF-diet-fed F344/DuCrj rats was greatly ameliorated. Plasma active GLP-1 concentrations of F344/DuCrj rats in the fed state were significantly higher than those of F344/Jcl rats. These observations suggest that DPPIV deficiency results in improved glucose tolerance and ameliorated insulin resistance owing to enhanced insulin release and inhibition of food intake as a result of high active GLP-1 levels. 相似文献
3.
BackgroundThe objective of this study was to investigate the effects of different chromium histidinate (CrHis) complexes added to the diet of rats fed a high-fat diet (HFD) on body weight changes, glucose and lipid metabolism parameters, and changes in biomarkers such as PPAR-γ, IRS-1, GLUTs, and NF-κB proteins.MethodsForty-two Sprague–Dawley rats were divided equally into six groups and fed either a control, an HFD, or an HFD supplemented with either CrHis1, CrHis2, CrHis3, or a combination of the CrHis complexes as CrHisM.ResultsFeeding an HFD to rats increased body weights, HOMA-IR values, fasting serum glucose, insulin, leptin, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, and MDA concentrations as well as AST activities, and decreased serum and brain serotonin concentrations compared with rats fed a control diet (P < 0.0001). The levels of the PPAR-γ, IRS-1, and GLUTs in the liver and brain decreased, while NF-κB level increased, with feeding an HFD (P < 0.05). Although all the CrHis supplements reversed the negative effects of feeding an HFD (P < 0.05), the CrHis1 complex was most effective in changing the protein levels, while CrHisM was most effective in influencing certain parameters such as body weight and serum metabolites.ConclusionThe results of the present work suggest that the CrHis1 complex is most potent for alleviating the negative effects of feeding an HFD. The efficacy of CrHisM is likely due to the presence of the CrHis1 complex. 相似文献
4.
Makoto Miyazaki Harini Sampath Xueqing Liu Kiki Chu James M. Ntambi 《Biochemical and biophysical research communications》2009,380(4):818-822
Obesity and adiposity greatly increase the risk for secondary conditions such as insulin resistance. Mice deficient in the enzyme stearoyl-CoA desaturase-1 (SCD1) are lean and protected from diet-induced obesity and insulin resistance. In order to determine the effect of SCD1 deficiency on various mouse models of obesity, we introduced a global deletion of the Scd1 gene into leptin-deficient ob/ob mice, leptin-resistant Agouti (Ay/a) mice, and high-fat diet-fed obese (DIO) mice. SCD1 deficiency lowered body weight, adiposity, hepatic lipid accumulation, and hepatic lipogenic gene expression in all three mouse models. However, glucose tolerance, insulin, and leptin sensitivity were improved by SCD1 deficiency only in Ay/a and DIO mice, but not ob/ob mice. These data uncouple the effects of SCD1 deficiency on weight loss from those on insulin sensitivity and suggest a beneficial effect of SCD1 inhibition on insulin sensitivity in obese mice that express a functional leptin gene. 相似文献
5.
We examined the effects of prenatal and postnatal nutrition on birthweight and insulin sensitivity, indicated by the glucose/insulin (G/I) ratio, in adult rats (F1 generation) and in their adult offspring (F2 generation). Rat pups (F1) whose dams consumed low-protein diets during gestation (malnourished) consumed either nutritionally adequate (control) or high-fat diets ad libitum post-weaning. The offspring of these rats (F2) were maintained on the same diets as their respective dams. Separate pups (F1) whose dams consumed high-fat diets during gestation (over-nourished) were maintained on high-fat diets post-weaning, as were their offspring (F2). Birthweights were significantly reduced in all fetally malnourished F1 animals. At approximately 70 d of age, fasting insulin sensitivity in over-nourished F1 rats was significantly reduced compared to controls regardless of whether they were malnourished or over-nourished in utero; however, fetally malnourished F1 rats consuming control diets post-natally had significantly greater fasting insulin sensitivity than control animals. At 30 and 120 min post-glucose load, insulin sensitivity was reduced 12-65% in both groups of over-nourished F1 rats as compared to the fetally malnourished F1 rats consuming the control diet. Birthweights were significantly lower in F2 animals whose dams (F1) were fetally malnourished and weaned to high fat diets. Insulin sensitivity was significantly reduced in all F2 animals versus control animals, regardless of dietary treatment. Thus, post-natal diets alter insulin sensitivity in fetally malnourished, adult rats; and maternal malnutrition during gestation results in insulin resistance in offspring, irrespective of offsprings' birthweight or diet. 相似文献
6.
7.
Objective: Low‐molecular weight chromium compounds, such as chromium picolinate [Cr(pic)3], improve insulin sensitivity, although toxicity is a concern. We synthesized a novel chromium complex, chromium (d ‐phenylalanine)3 [Cr(d ‐phe)3], in an attempt to improve insulin sensitivity with reduced toxicity. The aim of this study was to compare the two chromium compounds on cardiac contractile function in ob/ob obese mice. Research Methods and Procedures: C57BL lean and ob/ob obese mice were randomly divided into three groups: H2O, Cr(d ‐phe)3, or Cr(pic)3 (45 µg/kg per day orally for 6 months). Results: The glucose tolerance test displayed improved glucose clearance by Cr(d ‐phe)3 but not Cr(pic)3. Myocytes from ob/ob mice exhibited depressed peak shortening (PS) and maximal velocity of shortening/relengthening (±dL/dt), prolonged time‐to‐PS and time‐to‐90% relengthening (TR90), reduced electrically stimulated rise in intracellular Ca2+ (Δfura‐2 fluorescence intensity), and slowed intracellular Ca2+ decay. Although a 3‐month Cr(d ‐phe)3 treatment for a separate group of ob/ob and lean 2‐month‐old mice only rectified reduced ±dL/dt in ob/ob mice, all mechanical and intracellular Ca2+ abnormalities were significantly attenuated or ablated by 6 months of Cr(d ‐phe)3 but not Cr(pic)3 treatment (except TR90). Sarco(endo)plasmic reticulum Ca2+ ATPase activity and Na+‐Ca2+ exchanger expression were depressed in ob/ob mice, which were reversed by both Cr(d ‐phe)3 and Cr(pic)3, with a more pronounced effect from Cr(d ‐phe)3. Cr(d ‐phe)3 corrected reduced insulin‐stimulated glucose uptake and improved basal phosphorylation of Akt and insulin receptor, as well as insulin‐stimulated phosphorylation of Akt and insulin receptor in ob/ob myocytes. Heart homogenates from ob/ob mice had enhanced oxidative stress and protein carbonyl formation compared with the lean group, which were attenuated by both Cr(d ‐phe)3 and Cr(pic)3. Discussion: Our data suggest that the new Cr(d ‐phe)3 compound possesses better cardio‐protective and insulin‐sensitizing properties against obesity. 相似文献
8.
目的 观察益生菌对高脂饲料喂养的SD大鼠胰岛素抵抗的影响.方法 30只雄性健康SD大鼠正常喂养1周后,随机分为正常对照组、高脂模型组、益生菌干预组[即在高脂饲料喂养的基础上给予培菲康210 mg/(只·d)灌胃].14周末,处死所有大鼠,测量大鼠体重,检测血清及肝匀浆液中脂质和葡萄糖的变化,评价胰岛素抵抗程度,并检测血浆内毒素水平.结果 (1)与对照组比较,模型组大鼠肝指数明显升高(P<0.05);益生菌治疗后肝指数无明显降低(P>0.05).(2)与对照组比较,模型组存在脂质代谢紊乱(P<0.05),益生菌治疗后脂代谢紊乱明显改善(P<0.05).(3)与对照组比较,模型组胰岛素抵抗指数明显升高(P<0.05),胰岛素敏感指数明显降低(P<0.05),存在胰岛素抵抗,益生菌治疗后胰岛素抵抗改善(P<0.05).(4)与对照组比较,模型组血浆内毒素水平明显升高(P<0.05),存在内毒素血症,益生菌治疗后内毒素血症减轻(P<0.05).结论 益生菌可减轻内毒素血症,改善高脂饮食诱导的胰岛素抵抗. 相似文献
9.
Winzell MS Nogueiras R Dieguez C Ahrén B 《Biochemical and biophysical research communications》2004,321(1):154-160
Adiponectin is secreted by adipocytes and has been implicated as a mediator of insulin sensitivity. In this study, the acute effects of adiponectin on islets isolated from normal or diet-induced insulin resistant mice were examined. In normal islets, adiponectin (5 microg/ml) had no significant effect on insulin secretion. In contrast, in islets from mice rendered insulin resistant by high-fat feeding, adiponectin inhibited insulin secretion at 2.8 mM (P < 0.01) but augmented insulin secretion at 16.7 mM glucose (P < 0.05). The augmentation of glucose-stimulated insulin secretion by adiponectin was accompanied by increased glucose oxidation (P < 0.005), but without any significant effect on palmitate oxidation or the islet ATP/ADP ratio. Furthermore, RT-PCR revealed the expression of the adiponectin receptor AdipoR1 mRNA in mouse islets, however, with no difference in the degree of expression level between the two feeding groups. The results thus uncover a potential dual role for adiponectin to modify insulin secretion in insulin resistance. 相似文献
10.
This study tests the hypothesis that islet peroxisome proliferator-activated receptor alpha (PPARalpha) influences insulin secretion. Freshly isolated islets of normoglycemic PPARalpha-null mice display no major alteration of glucose-stimulated insulin release. However, after 24 h of culture in high glucose, PPARalpha-null islets exhibit elevated basal insulin secretion and fail to increase insulin mRNA. 24-h culture with palmitate replicates this phenotype in wild-type islets. The data suggest that PPARalpha is needed to ensure appropriate insulin secretory response in situation of short-term hyperglycemia, likely by maintaining islet lipid homeostasis. As such, islet PPARalpha could contribute to delay the progression of type 2 diabetes. 相似文献
11.
Chromium in carbohydrate and lipid metabolism 总被引:5,自引:0,他引:5
Since the discovery in the 1950s that mammals have a nutritional requirement for chromium, the biological function of chromium
has been sought. Candidates for the naturally-occurring biologically active form of chromium have been proposed, but, until
recently, all have been shown to be artifacts. Recent studies examining the properties of the oligopeptide low-molecular-weight
chromium-binding substance (LMWCr) suggest that this material may have a role in carbohydrate and lipid metabolism as part
of a novel insulin-signaling amplification mechanism and may have implications in the treatment of diabetes and related conditions.
Received: 24 March 1997 / Accepted: 9 September 1997 相似文献
12.
Bhaskarjyoti Gogoi Priyajit Chatterjee Sandip Mukherjee Alak Kumar Buragohain Samir Bhattacharya Suman Dasgupta 《Biochemical and biophysical research communications》2014
Skeletal muscle and adipose tissues are known to be two important insulin target sites. Therefore, lipid induced insulin resistance in these tissues greatly contributes in the development of type 2 diabetes (T2D). Ferulic acid (FRL) purified from the leaves of Hibiscus mutabilis, showed impressive effects in preventing saturated fatty acid (SFA) induced defects in skeletal muscle cells. Impairment of insulin signaling molecules by SFA was significantly waived by FRL. SFA markedly reduced insulin receptor β (IRβ) in skeletal muscle cells, this was affected due to the defects in high mobility group A1 (HMGA1) protein obtruded by phospho-PKCε and that adversely affects IRβ mRNA expression. FRL blocked PKCε activation and thereby permitted HMGA1 to activate IRβ promoter which improved IR expression deficiency. In high fat diet (HFD) fed diabetic rats, FRL reduced blood glucose level and enhanced lipid uptake activity of adipocytes isolated from adipose tissue. Importantly, FRL suppressed fetuin-A (FetA) gene expression, that reduced circulatory FetA level and since FetA is involved in adipose tissue inflammation, a significant attenuation of proinflammatory cytokines occurred. Collectively, FRL exhibited certain unique features for preventing lipid induced insulin resistance and therefore promises a better therapeutic choice for T2D. 相似文献
13.
Insulin resistance (IR) in childhood has importance to the understanding and prevention of the growing epidemic of insulin
resistance syndrome (IRS) in adults with attendant obesity, type 2 diabetes (T2DM), atherosclerotic diseases, hypertension,
gout, non-alcoholic, steato-hepatitis (NASH), gall bladder disease, nephropathy, polycystic ovarian disease (PCOS), infertility
and premature senility. The severity of IR and its’ complications in children unfortunately and usually progresses in their
pubertal transition to adulthood; affected young children are more likely than adults to have underlying causal monogenic
disorders; the sequence of natural history and events give insights into disease pathogeneses, and optimal life style choices
that last are best made during the early formative years. Some features of IR in children discussed herein are: a strong tendency
to low birth weight for gestational age, adverse effects of adrenarche and therapeutic steroid therapy, predisposition to
premature pubarche, acanthosis nigricans, tall stature despite pituitary GH suppression, allergic diathesis, hyperandrogenism
and PCOS, dyslipidemia and fatty liver disease, and diagnosis by clinical and biochemical markers of IR including insulin
regulated hepatic hormonal binding proteins such as IGFBP-1. The national preoccupation with the “metabolic syndrome” T2DM
and obesity, should be appropriately directed to an improved understanding of IR in children and their management, if the
looming health crisis in affected adults is to be seriously addressed. The nation is facing its’ first generation of children
who will be less healthy and die younger than the previous generation (Marks (2005) Presentation to the American Association
of Diabetes Educators 32nd Annual Meeting and Exhibition, August 10–13, Washington, DC). 相似文献
14.
胰岛素信号转导障碍与胰岛素抵抗的形成 总被引:4,自引:0,他引:4
胰岛素生理作用的发挥,起始于胰岛素与其受体的结合,并由此引起细胞内一系列信号转导,最终到达各效应器产生各种生理效应。胰岛素信号转导在胰岛素生理作用的发挥中起着至关重要的作用。胰岛素信号转导减弱或受阻,使得胰岛素生理作用减弱,导致胰岛素抵抗形成。本文综述了胰岛素信号转导失调在胰岛素抵抗形成中的作用。 相似文献
15.
《Reproductive biology》2022,22(1):100594
Polycystic ovary syndrome (PCOS) is a common endocrine gynecological disorder. Insulin resistance (IR) is a major cause of PCOS. Melatonin, a critical endogenous hormone, has beneficial effects on the female reproductive system. This study aims to investigate the molecular effect of melatonin on IR in human ovarian granulosa cells (GCs). Hormone levels of the subjects were determined through clinical examination. The expression levels of insulin receptor substrate (IRS)-1 and glucose transporter (GLUT4) in GCs from PCOS patients and a human granulosa cell line (SVOG) were examined using qRT-PCR and western blot. The IR cell model was established by inducing SVOG cells with palmitic acid (PA). IR was detected in GCs of PCOS patients and SVOG by measuring glucose content and glucose uptake. Cell viability and apoptosis levels were detected by CCK-8 assay and flow cytometry. PI3K/Akt pathway expression in SVOG was assessed by western blot. PCOS patients had higher levels of luteinizing hormone (LH), testosterone, and LH/follicle-stimulating hormone. PA decreased cell viability, promoted apoptosis, and reduced glucose uptake in SVOG cells. IRS-1 and GLUT4 mRNA and protein expression was downregulated, and glucose uptake capacity was reduced in PCOS GCs and SVOG cells. Melatonin significantly upregulated IRS-1 and GLUT4 expression, downregulated p-IRS-1 (Ser307), and improved glucose uptake in PCOS patients' GCs and SVOG cells. PA decreased PI3K and Akt phosphorylation, whereas melatonin increased p-PI3K and p-Akt levels. Melatonin can reduce IR in GCs and PA-induced SVOG cells via the PI3K/Akt signaling pathway, providing more evidence for treating polycystic ovary syndrome. 相似文献
16.
Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance 总被引:4,自引:0,他引:4
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance. 相似文献
17.
Emanuelli B Macotela Y Boucher J Ronald Kahn C 《Biochemical and biophysical research communications》2008,377(2):447-452
Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high-fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency alone is not able to prevent insulin resistance induced by a diet rich in fat. 相似文献
18.
Insulin resistance and hyperinsulinemia are commonly present in obesity and pre-diabetes, and hyperinsulinemia is both a marker and a cause for insulin resistance. However, the molecular link between hyperinsulinemia and insulin resistance remains elusive. The present study examined the effect of chronic insulin treatment on the reactive oxygen species (ROS) production, insulin signalling and insulin-stimulated glucose uptake in 3T3-L1 adipocytes. The results showed that chronic insulin treatment significantly increased the intracellular generation of superoxide anion, hydrogen peroxide and hydroxyl radical. ROS induced by chronic insulin treatment inhibited insulin signalling and glucose uptake, induced endoplasmic reticulum (ER) stress and JNK activation. Furthermore, these effects were reversed by antioxidants N-acetylcysteine, superoxide dismutase or catalase. These results suggested that ROS, ER stress and JNK pathway are involved in insulin resistance induced by chronic insulin treatment. Therefore, oxidative stress could be a potential interventional target for hyperinsulinemia-induced insulin resistance and related diseases. 相似文献
19.
Reactive oxygen species (ROS) have been proposed to be involved in the development of insulin resistance, although the exact molecular link between ROS and insulin resistance remains to be determined. Chromium (Cr(VI)) is known as an inducer of ROS. Therefore, this study examined whether Cr(VI) could induce insulin resistance. It demonstrated that Cr(VI) treatment significantly inhibited insulin-stimulated glucose uptake and attenuated insulin signalling. Moreover, Cr(VI) treatment markedly increased the intracellular levels of superoxide anion, hydrogen peroxide and hydroxyl radical. N-acetylcysteine, superoxide dismutase and catalase can block the ROS generation and alleviate the insulin resistance induced by Cr(VI) treatment. In addition, Cr(VI) treatment induced endoplasmic reticulum (ER) stress and JNK activation and these effects were diminished by N-acetylcysteine. These results suggested that ROS generation through Cr(VI) treatment cause ER stress, JNK activation and insulin resistance in adipocytes. Therefore, the oxidative stress could be a potential interventional target for insulin-resistance related diseases. 相似文献
20.
Onishi Y Honda M Ogihara T Sakoda H Anai M Fujishiro M Ono H Shojima N Fukushima Y Inukai K Katagiri H Kikuchi M Oka Y Asano T 《Biochemical and biophysical research communications》2003,303(3):788-794
High ethanol intake is considered to impair insulin sensitivity. In the present study, we investigated the acute and chronic effects of ethanol intake on glucose metabolism and insulin signal transduction. Hyperinsulinemic-euglycemic clamp studies revealed 70% and 51% decreases in the glucose infusion rate, 52% and 31% decreases in the glucose utilization rate, and 6.6- and 8.0-fold increases in hepatic glucose in continuous- and acute-ethanol-loaded rats, respectively. Despite the presence of insulin resistance, alcohol-fed rats showed enhanced tyrosine phosphorylation of insulin receptors, IRS-1 and IRS-2, induced by insulin injection via the portal vein. PI 3-kinase activities associated with IRSs and phosphotyrosine also increased significantly as compared with those of controls. These data suggest ethanol intake to be a factor leading to insulin resistance, regardless of whether it is a single or continuous intake. In addition, the insulin signaling step impaired by ethanol feeding is likely to be downstream from PI 3-kinase. 相似文献