首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of antimalarial action of [Au(CQ)(PPh3)]PF6 (1), which is active in vitro against CQ-resistant P. falciparum and in vivo against P. berghei, has been investigated in relation to hemozoin formation and DNA as possible important targets. Complex 1 interacts with heme and inhibits β-hematin formation both in aqueous medium and near water/n-octanol interfaces at pH ~ 5 to a greater extent than chloroquine diphosphate (CQDP) or other known metal-based antimalarial agents; the higher inhibition activity is probably related to the higher lipophilicity observed for 1 through partition coefficient measurements at low pH, with respect to CQDP. The interactions of complex 1 with DNA were explored using spectrophotometric and fluorimetric titrations, circular dichroism spectroscopy, viscosity and melting point studies, as well as electrophoresis and covalent binding assays. The experimental data indicate that complex 1 interacts with DNA predominantly by intercalation and electrostatic association of the CQ moiety, similarly to free CQDP, while no covalent metal-DNA binding seems to take place. The most likely antimalarial mechanism for complex 1 is thus heme aggregation inhibition; the high activities observed against resistant parasites are probably due to the structural modification of CQ introduced by the presence of the gold-triphenylphosphine fragment, together with the enhanced lipophilic character.  相似文献   

2.
Leishmaniasis is a parasitic zoonosis caused by protozoans of the genus Leishmania transmitted by insects known as phlebotomines, which are found in wild or urban environments. The disease occurs in tropical and sub-tropical areas, mainly in Asia, Europe, Africa and the Americas. At present, there is no effective treatment for this disease. In the search for new rational chemotherapeutic alternatives, two novel trans [Pt(Hpy1)2(Cl)2] (1) and trans [Pt(Hpy2)2 (Cl)2] (2) complexes were synthesized by the reaction of K2PtCl4 with sterol hydrazone ligands 20-hydrazone-pyridin-2-yl-5α-pregnan-3β-ol (Hpy1) and 22-hydrazone-pyridin-2-yl-chol-5-ene-3β-ol (Hpy2). These organic compounds are specific inhibitors of sterol methyl transferase (SMT). The new platinum complexes were characterized by a combination of ESI-MS (electrospray ionization-mass spectroscopy), UV-vis, infrared and NMR spectroscopies; elemental analysis and molar conductivity. Promastigotes of Leishmania (L.) mexicana were treated for 48 h with 10 μM of the sterol hydrazones Hpy1 or Hpy2 alone or coordinated to Pt. Hpy1 produced higher leishmanistatic activity than Hpy2 (39% growth inhibition vs. 16%), which significatively increased (71%, p < 0.001) when the complex trans-[Pt(Hpy1)2(Cl)2] was used. This complex represents a new chemotherapeutic alternative to be evaluated in depth in experimental models of leishmaniasis.  相似文献   

3.
The ligands 1-hydroxymethylpyrazole (hl1), 1-(2-hydroxyethyl)pyrazole (hl2) and 1-(3-hydroxypropyl)pyrazole (hl3) react with [PdCl2(CH3CN)2] to give trans-[PdCl2(hl)2] compounds. Due to a hindered rotation around the Pd-bond, these compounds present two different conformations in solution: anti and syn. The conformation presented depends on the relative disposition of the hydroxyalkylic chains of the two pyrazolic ligands. The present study was carried out on the basis of NMR experiments. The present paper reports the crystal structure of trans-[PdCl2(hl2)2]. The synthesis and characterisation of compounds [Pd(hl)4](BF4)2 (hl = hl1, hl2 and hl3) starting from [Pd(CH3CN)4](BF4)2 and the corresponding chlorocomplexes trans-[PdCl2(hl)2] are also described.  相似文献   

4.
Two platinum(II) complexes, [Pt(dpa)Cl2] (1) and [Pt(dpa)CBDCA] (2), where DPA=2,2-dipyridylamine and CBDCA=1,1-cyclobutanedicarboxylate, were synthesized and characterized by elemental analysis, IR spectroscopy, ES-MS and X-ray diffraction. Intermolecular hydrogen bonds were observed in both complexes (N-H?Cl for complex 1 and N-H?O for complex 2), which may play a role in formation of hydrogen bonding in metal-DNA adducts. Complex 2 adopts a boat conformation so that the cyclobutane ring and bipyridyl groups are on the same side of the platinum square. The interactions of complexes 1 and 2 with DNA were studied by UV and Fluorescence Spectroscopy, which indicated that both complexes could interact with DNA through groove binding or intercalation. The in vitro cytotoxic activity against melanoma B16-BL6 cells and human Jurkat T-cells was also reported.  相似文献   

5.
The interactions of π-arene-Ru(II)-chloroquine complexes with human serum albumin (HSA), apotransferrin and holotransferrin have been studied by circular dichroism (CD) and UV-Visible spectroscopies, together with isothermal titration calorimetry (ITC). The data for [Ru(η6-p-cymene)(CQ)(H2O)Cl]PF6 (1), [Ru(η6-benzene)(CQ)(H2O)Cl]PF6 (2), [Ru(η6-p-cymene)(CQ)(H2O)2][PF6]2 (3), [Ru(η6-p-cymene)(CQ)(en)][PF6]2 (4), [Ru(η6-p-cymene)(η6-CQDP)][BF4]2 (5) (CQ: chloroquine; DP: diphosphate; en: ethylenediamine), in comparison with CQDP and [Ru(η6-p-cymene)(en)Cl][PF6] (6) as controls demonstrate that 1, 2, 3, and 5, which contain exchangeable ligands, bind to HSA and to apotransferrin in a covalent manner. The interaction did not affect the α-helical content in apotransferrin but resulted in a loss of this type of structure in HSA. The binding was reversed in both cases by a decrease in pH and in the case of the Ru-HSA adducts, also by addition of chelating agents. A weaker interaction between complexes 4 and 6 and HSA was measured by ITC but was not detectable spectroscopically. No interactions were observed for complexes 4 and 6 with apotransferrin or for CQDP with either protein. The combined results suggest that the arene-Ru(II)-chloroquine complexes, known to be active against resistant malaria and several lines of cancer cells, also display a good transport behavior that makes them good candidates for drug development.  相似文献   

6.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

7.
The solid-state packing arrays of the platinum(II) trans- and cis-[PtCl2(PzH)2] (1 and 2) and platinum(IV) trans- and cis-[PtCl4(PzH)2] (3 and 4) complexes have been examined and the occurrence of N-H ? Cl hydrogen-bonding associations in those structures has been discussed. Although different packing motifs are observed, in all cases molecules are interacting mostly via NH ? Cl and CH ? Cl associations. The square planar 1 and 2 form stacked arrays of PtCl2(PzH)2, which are supported by NH ? Cl and CH ? Cl hydrogen bonding. The isomeric structure of the complexes and orientation of the PzH rings determine NH ? Cl bonding mode (intermolecular or intramolecular) and also the extent of the platinum-platinum interaction. The synthetic procedures for the preparation of 1-4 along with elemental and X-ray analyses, TG/DTA, FAB+-MS, IR, and 1H and 13C{1H} NMR data are also given in this article.  相似文献   

8.
One 0D monomer trans-[Ni(pn)2(dca)2] (1), one neutral 2D polymer [Ni(pn)(dca)2]n (2) and one polycationic 1D polymer [Ni(pn)2(dca)]n(PF6)n (3) (pn = 1,3-propanediamine; dca = dicyanamide) have been synthesized and X-ray crystallographically characterized. 1 has terminal trans-Ni(dca)2 unit, 2 contains both double bridged Ni-(NCNCN)2-Ni and single bridged Ni-(NCNCN)-Ni units in alternate fashion and 3 consists of single Ni-(NCNCN)-Ni bridge by covalent bonds. The nickel(II) centers are six-coordinated with distorted octahedral geometry. Multiple lateral N-H···N, C-H···N, N-H···F and C-H···F hydrogen bondings promote dimensionality. Variable-temperature magnetic measurements indicate weak antiferromagnetic interactions through μ1,5 bridge(s).  相似文献   

9.
The coordination chemistry of the ligand bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]ether (L1) was tested in front of Pd(II) and Pt(II). Complexes cis-[MCl2(L1)] (M=Pd(II) and Pt(II)) were obtained, due to the chelate condition of the ligand and the formation of a stable 10-membered ring. The crystal structure of cis-[PtCl2(L1)] was resolved by X-ray diffraction. Treatment of [PdCl2(L1)] or [Pd(CH3CN)4](BF4)2 with AgBF4 in the presence of L1 gave the complex [Pd(L1)2](BF4)2. The initial cis-[PdCl2(L1)] was recovered by reacting [Pd(L1)2](BF4)2 with an excess of NEt4Cl. Reaction of [Pt(CH3CN)4](BF4)2 (generated in situ from [PtCl2(CH3CN)2] and AgBF4 in acetonitrile) with ligand L1 yields complex [Pt(L1)2](BF4)2.  相似文献   

10.
The paper explores the capability of [(dppf)Pt(H-nbu2-DTO)]Cl (2) (dppf = 1,1′-diphenylphosphinoferrocene; H-nbu2-DTO = di-nbutyl-dithioxamidate) to act as a starting module for heterometallic linear chains. Actually, the reaction of 2 with [RuCl2(p-cymene)]2 affords the heterotrimetallic complex [Cl(p-cymene) Ru(μ-nbu2-DTO κ-N,N Ru κ-S,S Pt)Pt(dppf κ-P,P Pt) ]2 (4). However 2, allowed to stand, provides a blue compound of formula [(dppf)Pt(H-nbu2-DTO)]nCln (3), the most reliable value of n being 6. The oxidation behavior of the new species 2-4 has also been investigated. In particular, the oxidation behavior of cyclic compound 3 is quite unusual, and suggests a large delocalization of the HOMO over the whole multicomponent molecule.  相似文献   

11.
The distorted square-planar complexes [Pd(PNHP)Cl]Cl (1) (PNHP = bis[2-(diphenylphosphino)ethyl]amine), [M(P3)Cl]Cl [P3 = bis[2-(diphenylphosphino)ethyl]phenylphosphine; M = Pd (2), Pt (3)] and [Pt(NP3)Cl]Cl (5) (NP3 = tris[2-(diphenylphosphino)ethyl]amine), coexisting in the later case with a square-pyramidal arrangement, react with one equivalent of CuCl to give the mononuclear heteroionic systems [M(L)Cl](CuCl2) [L = PNHP, M = Pd (1a); L = P3, M = Pd (2a), Pt (3a); L = NP3, M = Pt (5a)]. The crystal structure of 3a confirms that Pt(II) retains the distorted square-planar geometry of 3 in the cation with P3 acting as tridentate chelating ligand, the central P atom being trans to one chloride. The counter anion is a nearly linear dichlorocuprate(I) ion. However, the five-coordinate complexes [Pd(NP3)Cl]Cl (4), [M(PP3)Cl]Cl (M = Pd (6), Pt (7); PP3 = tris[2-(diphenylphosphino)ethyl] phosphine) containing three fused five-membered chelate rings undergo a ring-opening by interaction with one (4, 6, 7) and two (6, 7) equivalents of CuCl with formation of neutral MCu(L)Cl3 [L = NP3, M = Pd (4a); L = PP3, M = Pd (6a), Pt (7a)] and ionic [MCu(PP3)Cl2](CuCl2) [M = Pd (6b), Pt (7b)] compounds, respectively. The heteronuclear systems were shown by 31P NMR to have structures where the phosphines are acting as tridentate chelating ligands to M(II) and monodentate bridging to Cu(I). Further additions of CuCl to the neutral species 6a and 7a in a 1:1 ratio resulted in the achievement of the ionic complexes 6b and 7b with ions as counter anions. It was demonstrated that the formation of heterobimetallic or just mononuclear mixed salt complexes was clearly influenced by the polyphosphine arrangement with the tripodal ligands giving the former compounds. However, complexes [M(NP3)Cl]Cl constitute one exception and the type of reaction undergone versus CuCl is a function of the d8 metal centre.  相似文献   

12.
Complex fac-[RuCl3(NO)(P-N)] (1) was synthesized from the reaction of [RuCl3(H2O)2(NO)] and the P-N ligand, o-[(N,N-dimethylamino)phenyl]diphenylphosphine) in refluxing methanol solution, while complex mer,trans-[RuCl3(NO)(P-N)] (2) was obtained by photochemical isomerization of (1) in dichloromethane solution. The third possible isomer mer,cis-[RuCl3(NO)(P-N)] (3) was never observed in direct synthesis as well as in photo- or thermal-isomerization reactions. When refluxing a methanol solution of complex (2) a thermally induced isomerization occurs and complex (1) is regenerated.The complexes were characterized by NMR (31P{1H}, 15N{1H} and 1H), cyclic voltammetry, FTIR, UV-Vis, elemental analysis and X-ray diffraction structure determination. The 31P{1H} NMR revealed the presence of singlet at 35.6 for (1) and 28.3 ppm for (2). The 1H NMR spectrum for (1) presented two singlets for the methyl hydrogens at 3.81 and 3.13 ppm, while for (2) was observed only one singlet at 3.29 ppm. FTIR Ru-NO stretching in KBr pellets or CH2Cl2 solution presented 1866 and 1872 cm−1 for (1) and 1841 and 1860 cm−1 for (2). Electrochemical analysis revealed a irreversible reduction attributed to RuII-NO+ → RuII-NO0 at −0.81 V and −0.62 V, for (1) and (2), respectively; the process RuII → RuIII, as expected, is only observed around 2.0 V, for both complexes.Studies were conducted using 15NO and both complexes were isolated with 15N-enriched NO. Upon irradiation, the complex fac-[RuCl3(NO)(P-N)] (1) does not exchange 14NO by 15NO, while complex mer,trans-[RuCl3(NO)(P-N)] (2) does. Complex mer,trans-[RuCl3(15NO)(P-N)] (2′) was obtained by direct reaction of mer,trans-[RuCl3(NO)(P-N)] (2) with 15NO and the complex fac-[RuCl3(15NO)(P-N)] (1′) was obtained by thermal-isomerization of mer,trans-[RuCl3(15NO)(P-N)] (2′).DFT calculation on isomer energies, electronic spectra and electronic configuration were done. For complex (1) the HOMO orbital is essentially Ru (46.6%) and Cl (42.5%), for (2) Ru (57.4%) and Cl (39.0%) while LUMO orbital for (1) is based on NO (52.9%) and is less extent on Ru (38.4%), for (2) NO (58.2%) and Ru (31.5%).  相似文献   

13.
The electrochemical behavior of the Pt(II)-based Baeyer-Villiger catalysts of the general formulae [Pt(μ-OH)(PP)]2(BF4)2 (PP = dppe (1a), 2Fdppe (1 b), 4Fdppe (1c), dfppe (1d), dmpe (1e), depe (1f), dippe (1g), dtbpe (1h)) and [Pt(OH2)2(PP)](OTf)2 (PP = dppe (2a), 2Fdppe (2b), 4Fdppe (2c), dfppe (2d)) is reported. They exhibit irreversible reduction processes whose potentials reflect the Lewis acidity of the metal centres, showing (for the aromatic diphosphine complexes) overall relations with the number of fluorine atoms, with JPt-P, with the ν(CN) coordination shift of a ligand isocyanide probe and with the catalytic activity. Single-crystal X-ray diffraction analyses were carried out for [Pt(μ-OH)(4Fdppe)]2(BF4)2 (1c) and [Pt(μ-OH) (dippe)]2(BF4)2 (1g).  相似文献   

14.
The dinuclear bis(6-X-pyridin-2-olato) ruthenium complexes [Ru2(μ-XpyO)2(CO)4(PPh3)2] (X = Cl (4B) and Br (5B)), [Ru2(μ-XpyO)2(CO)4(CH3CN)2] (X = Cl (6B), Br (7B) and F (8B)) and [Ru2(μ-ClpyO)2(CO)4(PhCN)2] (9B) were prepared from the corresponding tetranuclear coordination dimers [Ru2(μ-XpyO)2(CO)4]2 (1: X = Cl; 2: X = Br) and [Ru2(μ-FpyO)2(CO)6]2 (3) by treatment with an excess of triphenylphosphane, acetonitrile and benzonitrile, respectively. In the solid state, complexes 4B-9B all have a head-to-tail arrangement of the two pyridonate ligands, as evidenced by X-ray crystal structure analyses of 4B, 6B and 9B, in contrast to the head-to-head arrangement in the precursors 1-3. A temperature- and solvent-dependent equilibrium between the yellow head-to-tail complexes and the red head-to-head complexes 4A-7A and 9A, bearing an axial ligand only at the O,O-substituted ruthenium atom, exists in solution and was studied by NMR spectroscopy. Full 1H and 13C NMR assignments were made in each case. Treatment of 1 and 2 with the N-heterocyclic carbene (NHC) 1-butyl-3-methylimidazolin-2-ylidene provided the complexes [Ru2(μ-XpyO)2(CO)4(NHC)], X = Cl (11A) or Br (12A). An XRD analysis revealed the head-to-head arrangement of the pyridonate ligands and axial coordination of the carbene ligand at the O,O-substituted ruthenium atom. The conversion of 11A and 12A into the corresponding head-to-tail complexes was not possible.  相似文献   

15.
The complexes [Ru(η6-p-cymene)(CQ)Cl2] (1), [Ru(η6-benzene)(CQ)Cl2] (2), [Ru(η6-p-cymene)(CQ)(H2O)2][BF4]2 (3), [Ru(η6-p-cymene)(en)(CQ)][PF6]2 (4), [Ru(η6-p-cymene)(η6-CQDP)][BF4]2 (5) (CQ = chloroquine base; CQDP = chloroquine diphosphate; en = ethylenediamine) interact with DNA to a comparable extent to that of CQ and in analogous intercalative manner with no evidence for any direct contribution of the metal, as shown by spectrophotometric and fluorimetric titrations, thermal denaturation measurements, circular dichroism spectroscopy and electrophoresis mobility shift assays. Complexes 1-5 induced cytotoxicity in Jurkat and SUP-T1 cancer cells primarily via apoptosis. Despite the similarities in the DNA binding behavior of complexes 1-5 with those of CQ the antitumor properties of the metal drugs do not correlate with those of CQ, indicating that DNA is not the principal target in the mechanism of cytotoxicity of these compounds. Importantly, the Ru-CQ complexes are generally less toxic toward normal mouse splenocytes and human foreskin fibroblast cells than the standard antimalarial drug CQDP and therefore this type of compound shows promise for drug development.  相似文献   

16.
Reaction of platinum(II) salts with 5-ferrocenylpyrimidine (FcPM) afforded cis-[Pt(NH3)2(FcPM)2](PF6)2 (1), trans-[Pt(NH3)2(FcPM)2](PF6)2 (2), cis-[PtCl2(FcPM)2] (3), and cis-[PtCl2(DMSO)(FcPM)] (4): their spectroscopic and electrochemical properties were investigated. Complexes 1 and 2 were structurally characterized by X-ray crystallography.  相似文献   

17.
The synthesis and characterisation of eight new octahedral PtIV complexes of the type trans,trans,trans-[Pt(N3)2(OH)2(NH3)(Am)] where Am = methylamine (2), ethylamine (4), thiazole (6), 2-picoline (8), 3-picoline (10), 4-picoline (12), cyclohexylamine (14), and quinoline (16) are reported, including the X-ray crystal structures of complexes 2, 8, and 14 as well as that of two of the precursor PtII complexes (trans-[Pt(N3)2(NH3)(methylamine)] (1) and trans-[Pt(N3)2(NH3)(cyclohexylamine)] (13)). Irradiation with UVA light rapidly induces loss in intensity of the azide-to-PtIV charge-transfer bands and gives rise to photoreduction of platinum. These complexes have potential for use as photoactivated anticancer agents.  相似文献   

18.
The “amidate-hanging” Pt mononuclear complexes, which can easily bind a second metal ion with the non-coordinated oxygen atoms in the amidate moieties, have been synthesized and characterized by 1H NMR, MS, IR spectroscopy, and single crystal X-ray analysis. Five new complexes with various amidate ligands and co-ligands, cis-[Pt(PVM)2(en)] · 4H2O (1, PVM = pivaloamidate, en = ethylenediamine), cis-[Pt(PVM)2(NH2CH3)2] · H2O (2), cis-[Pt(PVM)2(NH2tBu)2] (3), cis-[Pt(TCM)2(NH3)2] (4, TCM = trichloroacetamidate), and cis-[Pt(BZM)2(NH3)2] (5, BZM = benzamidate), were successfully synthesized by direct base hydrolysis of the corresponding Pt nitrile complexes, cis-[Pt(NCR)2(Am)2]2+ (P1, P2, P3, and P5) (NCR = nitrile, Am = amine). These nitrile complexes were obtained by introducing nitriles into the Pt aqua complexes, cis-[Pt(OH2)2(Am)2](ClO4)2, whereas introduction of trichloronitrile into [Pt(OH2)2(NH3)2](ClO4)2 induced more facilitated water nucleophilic attack to afford [Pt(TCM)(NH(COH)CCl3)(NH3)2](ClO4) (P4). The base treatments of the precursor complexes (P1-5) lead to produce “amidate-hanging” Pt mononuclear complexes (1-5) without geometry isomerization. The 195Pt chemical shifts for 1-5 exhibit subtle differences of the Pt electron densities among them.  相似文献   

19.
cis,trans-Fe(CO)2(PMe3)2(p-Y-C6H4)X [X=Br, Y=H (4a), MeO (4b), Cl (4c), F (4d), Me (4e); X=I, Y=H (5); X=Cl, Y=H (6)] and cis,trans-Fe(CO)2(PMe3)2(σ-CHCH2)X [X=Br (7); X=I (8); X=Cl (9)] are prepared by reacting dihalide complexes cis,trans,cis- Fe(CO)2(PMe3)2X2 [X=Br (1), X=I (2), X=Cl (3)] with Grignard reagents p-Y-C6H4-MgBr (Y=H, OMe, Cl, F, Me) or CH2CH-MgBr and with lithium reagents PhLi, CH2CH-Li. With both reagents, the reaction proceeds following two parallel pathways: one is the metallation reaction which yields alkyl derivatives, the other affords 17 electron complexes [Fe(CO)2(PMe3)2X] via monoelectron reductive elimination. The influence of the halides and organometallic reagents on the yield of the metallation reaction is discussed. The solution structure of the complexes is assigned on the basis of IR and 1H, 13C, 19F, 31P NMR spectra. The solid state structure of complexes 4a, 5 and 6 is determined by single crystal X-ray diffractometric methods.  相似文献   

20.
The synthesis and structural characterization of four new copper compounds with formula [Cu(crot)2(isn)2(Hcrot)·H2O] (1), [Cu(oda)(isn)2] (2), [Cu(crot)2(nia)2·(H2O)] (3) and [Cu(oda)(nia)] (4) (crot = trans-2-butenoate, oda = oxydiacetate, isn = isonicotinamide, nia = nicotinamide) is reported. The complexes extend into 3D supramolecular structures by means of hydrogen bonds. EPR spectra of powder samples of the compounds are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号