首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root border cells (RBCs), which are generated during plant growth and surround the root cap, and iron plaque (IP), ubiquitously formed on the root surfaces of rice, are known to alleviate aluminum (Al) toxicity. To verify the interactive effects of IP and RBCs on ameliorating Al toxicity, two rice cultivars differing in Al resistance were used to compare Al tolerance between cultivars. Additionally, root elongation, Al uptake and RBCs viability were measured as indicators of the effects of Al. The amounts of DCB-extractable Fe and Al on the root surfaces were much higher in the presence of IP than the absence. IP presence significantly decreased Al-induced inhibition of root elongation and Al contents in roots and root tips. The removal of RBCs from the root tips caused a more severe inhibition of root elongation and a higher Al accumulation in rice roots and root tips. Furthermore, root growth inhibition and Al contents in roots and root tips were significantly lower in roots with a combination of IP and RBCs than in roots with IP or RBCs only. The formation of IP on the root surface maintained higher RBCs viability and depressed mucilage exudation in an Al-tolerant rice cultivar. The results suggest that both IP and RBCs ameliorate Al toxicity, and IP has a greater capacity for Al resistance. The combination of IP and RBCs exhibited a synergistic effect associated with Al resistance.  相似文献   

2.
以2个荞麦(Fygopyrum esculentum Moench)基因型‘江西荞麦’(耐性)和‘内蒙荞麦’(敏感)为材料,采用悬空培养(保持边缘细胞附着于根尖和去除根尖边缘细胞),研究边缘细胞对根尖铝毒的防护效应以及对细胞壁多糖组分的影响。结果表明,铝毒抑制荞麦根系伸长,导致根尖Al积累。去除边缘细胞的根伸长抑制率和根尖Al含量高于保留边缘细胞的根。去除边缘细胞使江西荞麦和内蒙荞麦根尖的酸性磷酸酶(APA)活性显著升高,前者在铝毒下增幅更大。同时,铝毒胁迫下去除边缘细胞的根尖果胶甲酯酶(PME)活性和细胞壁果胶、半纤维素1、半纤维素2含量显著高于保留边缘细胞的酶活性和细胞壁多糖含量。表明边缘细胞对荞麦根尖的防护效应,与其阻止Al的吸收,降低根尖细胞壁多糖含量及提高酸性磷酸酶活性有关,以此缓解Al对根伸长的抑制。  相似文献   

3.
NO和H2O2诱导大豆根尖和边缘细胞耐铝反应的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
 NO和H2O2是参与植物抗非生物胁迫反应的重要信号分子, 为了确定NO和H2O2在大豆(Glycine max)根尖和根边缘细胞(root border cells, RBCs)耐铝反应中的作用及其相互关系, 以‘浙春3号’大豆为材料, 研究了铝毒胁迫下大豆根尖内源NO和H2O2的变化, 以及外源NO和H2O2诱导大豆根尖和RBCs的耐铝反应。结果表明, 50 μmol·L–1 Al处理48 h显著抑制大豆根的伸长, 提高Al在根尖的积累, 同时显著增加根尖内源NO和H2O2含量。施加0.25 mmol·L–1外源NO供体亚硝基铁氰化钠(Na2[Fe(CN)5NO]·2H2O, sodium nitroprusside, SNP)和0.1 mmol·L–1H2O2, 能有效地缓解Al对大豆根伸长的抑制、根尖Al积累和RBCs 的死亡, 该缓解作用可以被0.05 mmol·L–1 NO清除剂2-(4- 羧基苯)-4,4,5,5- 四甲基咪唑-1- 氧-3- 氧化物, 钾盐(C14H16N2O4·K, carboxy-PTIO, cPTIO)和150 U·mL–1 H2O2清除酶(catalase, CAT)逆转。并且外源NO能够显著促进根尖H2O2的积累, 而外源H2O2对根尖NO的含量无显著影响。这表明NO和H2O2是诱导大豆根尖及RBCs耐铝反应的两种信号分子, NO可能通过调控H2O2的形成, 进而诱导大豆根尖及RBCs的耐铝反应。  相似文献   

4.
 以耐铝性明显差异的两个大豆(Glycine max)基因型‘浙秋2号’(耐性)和‘浙春3号’(敏感)为材料, 研究根尖边缘细胞比活度、粘液分泌和根长对铝胁迫和解除胁迫的反应, 明确边缘细胞的粘液分泌对策在铝毒环境中的生态学意义。结果表明, ‘浙秋2号’在100~400 µmol&;#8226;L–1 Al3+处理的3~12 h, 边缘细胞比活率呈递减趋势, 12 h后比活率又略有上升。‘浙春3号’在300和400 µmol&;#8226;L–1 Al3+处理的变化与前者一致。两个大豆基因型的粘液层随着Al3+浓度增加和时间延长而增厚, 并于400 µmol&;#8226;L–1 Al3+处理24 h时达到最大(>17 µm)。‘浙秋2号’在低浓度Al3+ (100和200 µmol&;#8226;L–1)处理3~6 h后就会分泌大量粘液, ‘浙春3号’则在300 µmol&;#8226;L–1 Al3+处理12 h后才有类似的变化。‘浙秋2号’在400 µmol&;#8226;L–1 Al3+处理下的根相对伸长率均高于100~300 µmol&;#8226;L–1 Al3+处理, ‘浙春3号’则表现为Al3+浓度越高, 根伸长受抑越明显。Al3+胁迫解除后, ‘浙秋2号’的粘液分泌速度和分泌量急剧下降, ‘浙春3号’在胁迫解除后的24 h, 仍会持续、大量地分泌粘液(>19 µm)。可见, 耐性大豆通过在铝胁迫初期快速、大量地分泌粘液以维持较高的边缘细胞活性和解除胁迫后迅速降低粘液的分泌速度及分泌量来适应铝毒害环境。  相似文献   

5.
Miyasaka SC  Hawes MC 《Plant physiology》2001,125(4):1978-1987
Root border cells are living cells that surround root apices of most plant species and are involved in production of root exudates. We tested predictions of the hypothesis that they participate in detection and avoidance of aluminum (Al) toxicity by comparing responses of two snapbean (Phaseolus vulgaris) cultivars (cv Dade and cv Romano) known to differ in Al resistance at the whole-root level. Root border cells of these cultivars were killed by excess Al in agarose gels or in simple salt solutions. Percent viability of Al-sensitive cv Romano border cells exposed in situ for 96 h to 200 microM total Al in an agarose gel was significantly less than that of cv Dade border cells; similarly, relative viability of harvested cv Romano border cells was significantly less than that of cv Dade cells after 24 h in 25 microM total Al in a simple salt solution. These results indicate that Al-resistance mechanisms that operate at the level of whole roots also operate at the cellular level in border cells. Al induced a thicker mucilage layer around detached border cells of both cultivars. Cultivar Dade border cells produced a thicker mucilage layer in response to 25 microM Al compared with that of cv Romano cells after 8 h of treatment and this phenomenon preceded that of observed cultivar differences in relative cell viability. Release of an Al-binding mucilage by border cells could play a role in protecting root tips from Al-induced cellular damage.  相似文献   

6.
Mucilage can strongly bind Al in the rhizosphere. Although there are still debates about the role of mucilage in protection of the root apex from Al toxicity, we considered that it might be associated with the characteristics of Al adsorption in mucilage. When the mucilage was kept intact, the accumulation of Al and induction of callose in root tips of pea (Pisum sativum) remained lower; thus root elongation was less inhibited than when mucilage was removed under Al exposure in mist culture. Size exclusion chromatography showed both a high and a low molecular weight polysaccharide fraction from root mucilage. Aluminum was predominately detected in high molecular weight polysaccharides, which strongly bound cations. The results indicate that the persistence of mucilage does protect the root apex from Al toxicity by immobilizing Al in high molecular weight polysaccharides.  相似文献   

7.
Inhibition of growth and development of root border cells in wheat by Al   总被引:18,自引:0,他引:18  
The production and development of border cells vary with genotype, and they are released in wheat at an earlier stage of root development than other species studied so far. No significant difference was observed in the maximum number of border cells between Al-tolerant (Atlas 66) and Al-sensitive (Scout 66) cultivars in the absence of Al treatment. Al seriously inhibited the production and release of border cells, resulting in clumping of border cells in Scout 66, but less clustering in Atlas 66. The number of border cells released from roots treated with Al is significantly less than that from roots grown without Al treatment. Al treatment induced the death of detached border cells in vitro and they were killed by a 20-h treatment with 25 µ m Al. No significant difference in survival percentage of detached border cells was observed between Atlas 66 and Scout 66, regardless of the presence or absence of Al. The removal of border cells from root tips of both Atlas 66 and Scout 66 enhanced the Al-induced inhibition of root elongation concomitant with increased Al accumulation in the root. These results suggest that border cells adhered to the root tips play a potential role in the protection of root from Al injury in wheat.  相似文献   

8.
BACKGROUND AND AIMS: As with other crop species, Al tolerance in rice (Oryza sativa) is widely different among cultivars, and the mechanism for tolerance is unknown. The Ca2+-displacement hypothesis, that is, Al displaces Ca2+ from critical sites in the root apoplast, was predicted to be the essential mechanism for causing Al toxicity in rice cultivars. If displacement of Ca is an essential cause of Al toxicity in rice, Al toxicity may show the same trend as toxicities of elements such as Sr and Ba that are effective in displacing Ca. METHODS: The interactive effects of Al, Ca, Sr and Ba on root elongation of rice cultivars with different Al tolerances were evaluated in hydroponic culture. Al and Ca accumulation in root tips was also investigated. KEY RESULTS AND CONCLUSIONS: Not only Al but also Sr and Ba applications inhibited root growth of rice cultivars under low Ca conditions. As expected, rice cultivars more tolerant of Sr and Ba were also tolerant of Al (japonica > indica). Although Mg application did not affect Sr or Ba toxicity, Mg alleviated Al toxicity to the same level as Ca application. In addition, Ca application decreased the Al content in root tips without displacement. These results suggest that Ca does not have a specific, irreplaceable role in Al toxicity, unlike Sr and Ba toxicities. Alleviation of Al toxicity with increasing concentrations of Ca in rice cultivars is due to increased ionic strength, not due to decreased Al activity. The difference in Al tolerance between indica and japonica cultivars disappears under high ionic strength conditions, suggesting that different electrochemical characteristics of root-tip cells are related to the significant difference in Al tolerance under low ionic strength conditions.  相似文献   

9.
M. Iijima  Y. Sako  T. P. Rao 《Plant and Soil》2003,255(1):399-407
Direct evidence on the functions of root-cap mucilage during plant root growth in soil is limited mainly due to the lack of a method for in situ measurements. In this paper, we offer a method that facilitates the measurement of mucilage exudation when roots are growing in soil. We observed the mucilage exudation directly through a transparent panel located on the side of a root box in which plant roots were growing. We used a CCD camera attached to a microscope to observe and record mucilage exudation. Using image analysis, the activity of mucilage exudation was evaluated based on the area occupied by the mucilage on the root tip. The area of mucilage observed on the root tips after 1-h growth in soil corresponded with the weight of mucilage that was originally observed on the tips before they were transplanted. This relationship suggests that the observed area on root tip relates to total exudation. The area of mucilage exudation on the root tips was high (0.48 mm2) at night and low (0.35 mm2) at midday, suggesting that the activity of mucilage exudation follows diurnal changes. Furthermore, the mucilage exudation positively correlated with the root elongation rate, implying that fast-growing roots exude more mucilage.  相似文献   

10.
The possible role of mucilage in protecting roots from aluminum (Al) injury was investigated in Zea mays L. (cv. Golden Cross Bantam), focusing on binding of Al with mucilage and effects of mucilage on Al toxicity. Al was bound to mucilage after the treatment of roots with 10–50 μ M Al for 1 h and 30 μ M Al for 30, 60, 90 and 120 min. Using molecular sieve chromatography (Sephadex G-100), Al was co-eluted with a high molecular mass sugar and a low molecular mass sugar. The difficulty in desorbing Al from mucilage with organic acids confirmed the strong binding strength of Al by mucilage revealed by 27Al nuclear magnetic resonance (NMR). Al could not be desorbed completely by succinic, malic, oxalic and citric acid at a molar ratio of 1:1. It could only be completely removed by oxalic acid at a molar ratio of 20:1 (oxalate:Al). Bioassay experiments showed that cell viability and callose formation were unaffected by Al bound to mucilage. However, mucilage deprived roots had only 0.21–0.59 nmol apex−1 higher Al content than control roots after treatment with 30 μ M Al for 1, 1.5 and 2 h. Moreover, inhibition of root elongation by 5 μ M Al for 6, 12, 24 and 36 h was independent of the presence or absence of mucilage prior to the Al treatment. These results indicate that although mucilage affects the accumulation of Al by roots, it does not confer Al resistance to Z. mays root apices.  相似文献   

11.
铝胁迫对大豆叶片光合特性的影响   总被引:36,自引:2,他引:36  
以大豆浙春2号、浙春3号和9703等3个品种(系)为材料,设置不同铝处理浓度,研究了铝对大豆叶片光合作用特性的影响.结果表明,铝处理抑制了大豆叶片叶绿素的合成,降低了大豆叶片叶绿素含量(5%~35%),使a/b值下降,气孔阻力增加10%~35%,气孔导度降低10%~40%,光合速率和蒸腾速率分别下降了5%~40%和20%~50%,水分利用率下降15%~50%.可见,铝胁迫对大豆叶片的光合作用产生了一定的抑制,且这种抑制在大豆5叶期表现较初荚期明显.此外,3个大豆品种对铝毒的反应存在一定的基因型差异.  相似文献   

12.
锰对大豆若干生理特性的影响   总被引:2,自引:0,他引:2  
利用水培法研究锰对浙春2号和浙春3号大豆根系活力及叶片脯氨酸、丙二醛和蛋白质的影响。结果表明,适量锰处理可提高大豆根系活力,降低叶片中脯氨酸、蛋白质和丙二醛含量;锰过量,不利于大豆生长。两个大豆品种对锰的反应有差异,浙春3号对锰的敏感性大于浙春2号。  相似文献   

13.
Boron alleviates aluminum toxicity in pea (Pisum sativum)   总被引:3,自引:0,他引:3  
One important target of boron (B) deficiency and aluminum (Al) toxicity is cell wall. Thus we studied the hypothesis that B is capable of alleviating Al toxicity in pea (Pisum sativum). Short-term and prolonged Al exposure to pea roots at different B levels was carried out on uniform seedlings pre-cultured at a low B level. When seedlings with a low B level were supplied with or without B for 1 and 2 days before 24 h Al exposure, roots were longer while root diameter was thinner after B addition especially for 2 days even with exposure to Al; root elongation was inhibited while root diameter was enlarged by Al exposure. Callose induction by Al toxicity was higher with B added, but this was reversed after the removal of the cotyledons. Hematoxylin staining was lighter in the root tips given B, and Al content in the root tips and cell walls dropped after exposure to B. This indicates that B alleviated Al toxicity in the root tips during short-term Al exposure by decreasing Al binding in root cell walls. An increase in chlorophyll and biomass and reduced chlorosis were found at the higher level of B during prolonged Al treatment, which was coincided with the decreased Al contents, indicating that B alleviated Al toxicity to shoots. B supplementation alleviates some of the consequences of Al toxicity by limiting some Al binding in cell walls, resulting in less injury to the roots as well as less injury to the shoots.  相似文献   

14.
The interaction of boron (B) and aluminium (Al) was investigated in 5-day-old seedlings of soybean cv. Maple Arrow. Al treatment inhibited root elongation and callose formation in root tips particularly after 4-h Al treatment. After 10 and 24 h, both parameters indicated increasing recovery from Al stress. B deficiency aggravated Al toxicity compared with B sufficiency. B deficiency did lead to an increase in unmethylated pectin in the first 3 mm of the root tip. This increase in potential binding sites is reflected in generally higher Al contents in root tips of B-deficient plants. A fractionated extraction of Al from the root tips showed that citrate-exchangeable and non-exchangeable Al steeply increased up to 4 h, but then decreased after 10- and 24-h Al treatment faster in B-sufficient than in B-deficient plants. This decrease of Al contents can be explained by an Al-enhanced release of citrate from the root tips after 10-h Al treatment. However, the citrate exudation rate was the same (after 10 h) or even lower (after 24 h) in B-sufficient plants and thus cannot explain the faster decrease in Al contents of the root tips compared with the B-deficient plants. We, therefore, propose that under B deficiency, Al is more strongly bound by the pectic network of the cell wall of the root tips, which delays or prevents the recovery from initial Al stress through exudation of citrate, and thus explains the greater Al sensitivity of B-deficient common bean roots.  相似文献   

15.
Aluminum (Al) resistance of 57 Madeiran wheat cultivars was evaluated using callose content in root tips and root elongation as markers. Al induced callose formation was a very sensitive indicator of Al damage detecting wide range of genotypic differences existing in the Madeiran wheat germplasm. A weak, yet positive correlation (R2=0.285, P<0.05) between callose content and root elongation was found.  相似文献   

16.
Horst  W.J.  Püschel  A.-K.  Schmohl  N. 《Plant and Soil》1997,192(1):23-30
The screening of 37 Zea mays L. cultivars in nutrient solution using root elongation (24 h) as a parameter showed large genotypic differences in Al resistance among the genetic material evaluated.Callose concentrations in root tips were closely and positively related to Al-induced inhibition of root elongation. Therefore, Al-induced callose formation in root tips appears to be an excellent indicator of Al injury and can be used as a selection criteria for Al sensitivity. In contrast, aluminium concentrations in root tips were not related to Al-induced inhibition of root elongation, nor to Al-induced callose formation. Callose formation was also induced by short-term A1 treatment in root tip protoplasts, and the response of protoplasts clearly reflected the cultivar-specific response to Al of intact roots. This indicates that in maize, Al sensitivity is expressed on the protoplast level.  相似文献   

17.

Background and Aims

Aluminium (Al) toxicity is one of the factors limiting crop production on acid soils. However, genotypic differences exist among plant species or cultivars in response to Al toxicity. This study aims to investigate genotypic differences among eight cultivars of tatary buckwheat (Fagopyrum tataricum) for Al resistance and explore the possible mechanisms of Al resistance.

Methods

Al resistance was evaluated based on relative root elongation (root elongation with Al/root elongation without Al). Root apex Al content, pectin content and exudation of root organic acids were determined and compared.

Key Results

Genotypic differences among the eight cultivars were correlated with exclusion of Al from the root apex. However, there was a lack of correlation between Al exclusion and Al-induced oxalate secretion. Interestingly, cell-wall pectin content of the root apex was generally lower in Al-resistant cultivars than in Al-sensitive cultivars. Although we were unable to establish a significant correlation between Al exclusion and pectin content among the eight cultivars, a strong correlation could be established among six cultivars, in which the pectin content in the most Al-resistant cultivar ‘Chuan’ was significantly lower than that in the most Al-sensitive cultivar ‘Liuku2’. Furthermore, root apex cell-wall pectin methylesterase activity (PME) was similar in ‘Chuan’ and ‘Liuku2’ in the absence of Al, but Al treatment resulted in increased PME activity in ‘Liuku2’ compared with ‘Chuan’. Immunolocalization of pectins also showed that the two cultivars had similar amounts of either low-methyl-ester pectins or high-methyl-ester pectins in the absence of Al, but Al treatment resulted in a more significant increase of low-methyl-ester pectins and decrease of high-methyl-ester pectins in ‘Liuku2’.

Conclusions

Cell-wall pectin content may contribute, at least in part, to differential Al resistance among tatary buckwheat cultivars.  相似文献   

18.
Aluminum (Al3+) toxicity in acidic soils limits crop productivity worldwide. In this study, we found that putrescine (PUT) significantly alleviates Al toxicity in rice roots. The addition of 0.1 mM PUT promoted root elongation and reduced the Al content in the root apices of Nipponbare (Nip) and Kasalath (Kas) rice under Al toxicity conditions. Exogenous treatment with PUT reduced the cell wall Al content by reducing polysaccharide (pectin and hemicellulose) levels and pectin methylesterase (PME) activity in roots and decreased the translocation of Al from the external environment to the cytoplasm by downregulating the expression of OsNRAT1, which responsible to encode an Al transporter protein Nrat1 (Nramp aluminum transporter 1). The addition of PUT under Al toxicity conditions significantly inhibited ethylene emissions and suppressed the expression of genes involved in ethylene biosynthesis. Treatment with the ethylene precursor 1‐aminocylopropane‐1‐carboxylic acid (ACC) significantly improved ethylene emission, inhibited root elongation, increased the Al accumulation in root tips and the root cell wall, and increased cell wall pectin and hemicellulose contents in both rice cultivars under Al toxicity conditions. The ethylene biosynthesis antagonist aminoethoxyvinylglycine (AVG, inhibitor of the ACC synthase) had the opposite effect and reduced PME activity. Together, our results show that PUT decreases the cell wall Al contents by suppressing ethylene emissions and decreases the symplastic Al levels by downregulating OsNRAT1 in rice.  相似文献   

19.
Four maize cultivars, which differ in tolerance to acid soils under field conditions ( Zea mays L., acid soil-tolerant C 525 M, BR 201 F and Adour 250, and acid soil-sensitive HS 7777) were used to study the influence of pH (4.3 and 6.0) and Al (0, 20 and 50 μ M ) on the elongation of seminal roots in nutrient solution. Root elongation was inhibited by high H+ concentrations (pH 4.3) in cultivars C 525 M, Adour 250 and HS 7777 but not in BR 201 F. After 20 h exposure to Al, root elongation rates were more inhibited in cultivars BR 201 F and HS 7777 than in C 525 M and Adour 250. The use of a computerized linear displacement transducer system with high resolution (1 μm) allowed the monitoring of short-term responses of root elongation to Al. In the three cultivars affected by H+ toxicity, but not in the acid-tolerant BR 201 F, Al supply caused an immediate, but transient increase of relative root elongation rates. This result supports the hypothesis that Al-induced growth stimulation is caused by amelioration of proton toxicity. The time required for 20 μ M Al to induce a 5% decrease of root elongation rates was shorter in the Al-sensitive BR 201 F (33 min) and HS 7777 (86 min) than in the Al-tolerant C 525 M (112 min) and Adour 250 (146 min) cultivars. However, the response-time to Al may be overestimated in the proton-sensitive cultivars, due to the transient stimulation of root elongation rates induced by Al. According to our results, experiments intended to investigate primary mechanisms of Al toxicity should be started after less than 30 min exposure to toxic Al concentrations, using pH conditions which avoid Al-induced growth stimulation due to amelioration of proton toxicity.  相似文献   

20.
The role of organic acids in aluminum (Al) tolerance has been the object of intensive research. In the present work, we evaluated the roles of organic acid exudation and concentrations at the root tip on Al tolerance of soybean. Exposing soybean seedlings to Al3+ activities up to 4.7 μ M in solution led to different degrees of restriction of primary root elongation. Al tolerance among genotypes was associated with citrate accumulation and excretion into the external media. Citrate and malate efflux increased in all genotypes during the first 6 h of Al exposure, but only citrate efflux in Al-tolerant genotypes was sustained for an extended period. Tolerance to Al was correlated with the concentration of citrate in root tips of 8 genotypes with a range of Al sensitivities (r2=0.75). The fluorescent stain lumogallion indicated that more Al accumulated in root tips of the Al-sensitive genotype Young than the Al-tolerant genotype PI 416937, suggesting that the sustained release of citrate from roots of the tolerant genotype was involved in Al exclusion. The initial stimulation of citrate and malate excretion and accumulation in the tip of all genotypes suggested the involvement of additional tolerance mechanisms. The experiments included an examination of Al effects on lateral root elongation. Extension of lateral roots was more sensitive to Al than that of tap roots, and lateral root tips accumulated more Al and had lower levels of citrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号