首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2 involves reaction of a peroxide-induced Tyr385 radical with arachidonic acid (AA) to form an AA radical that reacts with O2. The potential for isomeric AA radicals and formation of an alternate tyrosyl radical at Tyr504 complicate analysis of radical intermediates. We compared the EPR spectra of PGHS-1 and -2 reacted with peroxide and AA or specifically deuterated AA in anaerobic, single-turnover experiments. With peroxide-treated PGHS-2, the carbon-centered radical observed after AA addition was consistently a pentadienyl radical; a variable wide-singlet (WS) contribution from mixture of Tyr385 and Tyr504 radicals was also present. Analogous reactions with PGHS-1 produced EPR signals consistent with varying proportions of pentadienyl and tyrosyl radicals, and two additional EPR signals. One, insensitive to oxygen exposure, is the narrow singlet tyrosyl radical with clear hyperfine features found previously in inhibitor-pretreated PGHS-1. The second type of EPR signal is a narrow singlet lacking detailed hyperfine features that disappeared upon oxygen exposure. This signal was previously ascribed to an allyl radical, but high field EPR analysis indicated that ~ 90% of the signal originates from a novel tyrosyl radical, with a small contribution from a carbon-centered species. The radical kinetics could be resolved by global analysis of EPR spectra of samples trapped at various times during anaerobic reaction of PGHS-1 with a mixture of peroxide and AA. The improved understanding of the dynamics of AA and tyrosyl radicals in PGHS-1 and -2 will be useful for elucidating details of the cyclooxygenase mechanism, particularly the H-transfer between tyrosyl radical and AA.  相似文献   

2.
Peroxide-generated tyrosyl radicals in both prostaglandin H synthase (PGHS) isozymes have been demonstrated to couple the peroxidase and cyclooxygenase activities by serving as the immediate oxidant for arachidonic acid (AA) in cyclooxygenase catalysis. Acetylation of Ser-530 of PGHS-1 by aspirin abolishes all oxygenase activity and transforms the peroxide-induced tyrosyl radical from a functional 33-35-gauss (G) wide doublet/wide singlet to a 26-G narrow singlet unable to oxidize AA. In contrast, aspirin-treated PGHS-2 (ASA-PGHS-2) no longer forms prostaglandins but retains oxygenase activity forming 11(R)- and 15(R)-hydroperoxyeicosatetraenoic acid and also retains the EPR line-shape of the native peroxide-induced 29-30-G wide singlet radical. To evaluate the functional role of the wide singlet radical in ASA-PGHS-2, we have examined the ability of this radical to oxidize AA in single-turnover EPR studies. Anaerobic addition of AA to ASA-PGHS-2 immediately after formation of the wide singlet radical generated either a 7-line EPR signal similar to the pentadienyl AA radical obtained in native PGHS-2 or a 26-28-G singlet radical. These EPR signals could be accounted for by a pentadienyl radical and a strained allyl radical, respectively. Experiments using 11d-AA, 13(R)d-AA, 15d-AA, 13,15d(2)-AA, and octadeuterated AA (d(8)-AA) confirmed that the unpaired electron in the pentadienyl radical is delocalized over C11, C13, and C15. A 6-line EPR radical was observed when 16d(2)-AA was used, indicating only one strongly interacting C16 hydrogen. These results support a functional role for peroxide-generated tyrosyl radicals in lipoxygenase catalysis by ASA-PGHS-2 and also indicate that the AA radical in ASA-PGHS-2 is more constrained than the corresponding radical in native PGHS-2.  相似文献   

3.
To investigate the involvement of a hemoglobin radical in the human oxyhemoglobin (oxyHb) or metHb/H2O2 system, we have used a new approach called "immuno-spin trapping," which combines the specificity and sensitivity of both spin trapping and antigen:antibody interactions. Previously, a novel rabbit polyclonal anti-DMPO nitrone adduct antiserum, which specifically recognizes protein radical-derived nitrone adducts, was developed and validated in our laboratory. In the present study, the formation of nitrone adducts on hemoglobin was shown to depend on the oxidation state of the iron heme, the concentrations of H2O2 and DMPO, and time as determined by enzyme-linked immunosorbent assay (ELISA) and by Western blotting. The presence of reduced glutathione or L-ascorbate significantly decreased the level of nitrone adducts on metHb in a dose-dependent manner. To confirm the ELISA results, Western blotting analysis showed that only the complete system (oxy- or metHb/DMPO/H2O2) generates epitopes recognized by the antiserum. The specific modification of tyrosine residues on metHb by iodination nearly abolished antibody binding, while the thiylation of cysteine residues caused a small but reproducible decrease in the amount of nitrone adducts. These findings strongly suggest that tyrosine residues are the site of formation of the immunochemically detectable hemoglobin radical-derived nitrone adducts. In addition, we were able to demonstrate the presence of hemoglobin radical-derived nitrone adducts inside red blood cells exposed to H2O2 and DMPO. In conclusion, our new approach showed several advantages over EPR spin trapping with the anti-DMPO nitrone adduct antiserum by demonstrating the formation of tyrosyl radical-derived nitrone adduct(s) in human oxyHb/metHb at much lower concentrations than was possible with EPR and detecting radicals inside RBC exposed to H2O2.  相似文献   

4.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   

5.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

6.
Incubation of MC-1010 cells with the spin-trapping agent 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) followed by brief treatment with the solid oxidant lead dioxide (PbO2) yielded, after filtration, a cell-free solution that contained two nitroxyl adducts. The first was the hydroxyl radical adduct, 5,5-dimethyl-2-hydroxypyrrolidine-1-oxyl (DMPO-OH), which formed immediately upon PbO2 oxidation. The second had a 6-line EPR spectrum typical of a carbon-centered radical (AN=15.9 G; AH=22.4 G) and formed more slowly. No radical signals were detected in the absence of either cells or PbO2 treatment. The 6-line spectrum could be duplicated in model systems that contained ascorbate, DMPO and DMPO-OH, where the latter was formed from hydroxyl radicals generated by sonolysis or the cleavage of hydrogen peroxide with Fe2+ (Fenton reaction). In addition, enrichment of MC-1010 cells with ascorbate prior to spin trapping yielded the 6-line EPR spectrum as the principal adduct following PbO2 oxidation and filtration. These results suggest that ascorbate reacted with DMPO-OH to form a carbon-centered ascorbyl radical that was subsequently trapped by DMPO. The requirement for mild oxidation to detect the hydroxyl radical adduct suggests that DMPO-OH formed in the cells was reduced to an EPR-silent form (i.e., the hydroxylamine derivative). Alternatively, the hydroxylamine derivative was the species initially formed. The evidence for endogenous hydroxyl radical formation in unstimulated leukocytes may be relevant to the leukemic nature of the MC-1010 cell line. The spin trapping of the ascorbyl radical is the first report of formation of the carbon-centered ascorbyl radical by means other than pulse radiolysis. Unless it is spin trapped, the carbon-centered ascorbyl radical immediately rearranges to the more stable oxygen-centered species that is passive to spin trapping and characterized by the well-known EPR doublet of AH4=1.8 G.Abbreviation EPR Electron Paramagnetic Resonance  相似文献   

7.
Hydroperoxide-induced tyrosyl radicals are putative intermediates in cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2. Rapid-freeze EPR and stopped-flow were used to characterize tyrosyl radical kinetics in PGHS-1 and -2 reacted with ethyl hydrogen peroxide. In PGHS-1, a wide doublet tyrosyl radical (34-35 G) was formed by 4 ms, followed by transition to a wide singlet (33-34 G); changes in total radical intensity paralleled those of Intermediate II absorbance during both formation and decay phases. In PGHS-2, some wide doublet (30 G) was present at early time points, but transition to wide singlet (29 G) was complete by 50 ms. In contrast to PGHS-1, only the formation kinetics of the PGHS-2 tyrosyl radical matched the Intermediate II absorbance kinetics. Indomethacin-treated PGHS-1 and nimesulide-treated PGHS-2 rapidly formed narrow singlet EPR (25-26 G in PGHS-1; 21 G in PGHS-2), and the same line shapes persisted throughout the reactions. Radical intensity paralleled Intermediate II absorbance throughout the indomethacin-treated PGHS-1 reaction. For nimesulide-treated PGHS-2, radical formed in concert with Intermediate II, but later persisted while Intermediate II relaxed. These results substantiate the kinetic competence of a tyrosyl radical as the catalytic intermediate for both PGHS isoforms and also indicate that the heme redox state becomes uncoupled from the tyrosyl radical in PGHS-2.  相似文献   

8.
Electron paramagnetic resonance (EPR) spin trapping was used to detect lipid-derived free radicals generated by iron-induced oxidative stress in intact cells. Using the spin trap alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN), carbon-centered radical adducts were detected. These lipid-derived free radicals were formed during incubation of ferrous iron with U937 cells that were enriched with docosahexaenoic acid (22:6n-3). The EPR spectra exhibited apparent hyperfine splittings characteristic of a POBN/alkyl radical, aN = 15.63 +/- 0.06 G and aH = 2.66 +/- 0.03 G, generated as a result of beta-scission of alkoxyl radicals. Spin adduct formation depended on the FeSO4 content of the incubation medium and the number of 22:6-enriched cells present; when the cells were enriched with oleic acid (18:1n-9), spin adducts were not detected. This is the first direct demonstration, using EPR, of a lipid-derived radical formed in intact cells in response to oxidant stress.  相似文献   

9.
The study of the important role of peroxyl radicals in biological systems is limited by their difficult detection with direct electron spin resonance (ESR). Many ESR spectra were assigned to 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/peroxyl radical adducts based only on the close similarity of their ESR spectra to that of DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the radical adduct from DMPO/superoxide radical adduct. Later, the spin-trapping literature reported that DMPO/peroxyl radical adducts have virtually the same hyperfine coupling constants as synthesized alkoxyl radical adducts, raising the issue of the correct assignment of peroxyl radical adducts. However, using 17O-isotope labelling, the methylperoxyl and methoxyl radical adducts should be distinguishable. We have reinvestigated the spin trapping of the methylperoxyl radical. The methylperoxyl radical was generated in aerobic solution with 17O-molecular oxygen either in a Fenton system with dimethylsulfoxide or in a chloroperoxidase system with tert-butyl hydroperoxide. Two different spin traps, DMPO and 2,2,4-trimethyl-2H-imidazole-1-oxide (TMIO), were used to trap methylperoxyl radical. 17O-labelled methanol was used to synthesize methoxyl radical adducts by nucleophylic addition. It was shown that the 17O hyperfine coupling constants of radical adducts formed in methylperoxyl radical-generating systems are identical to that of the methoxyl radical adduct. Therefore, methylperoxyl radical-producing systems form detectable methoxyl radical adduct, but not detectable methylperoxyl radical adducts at room temperature. One of the possible mechanisms is the decomposition of peroxyl radical adduct with the formation of secondary alkoxyl radical adduct. These results allow us to reinterpret previously published data reporting detection of peroxyl radical adducts. We suggest that detection of 17O-alkoxyl radical adduct from 17O-labelled molecular oxygen can be used as indirect evidence for peroxyl radical generation.  相似文献   

10.
Rogge CE  Liu W  Wu G  Wang LH  Kulmacz RJ  Tsai AL 《Biochemistry》2004,43(6):1560-1568
Hydroperoxides induce formation of a tyrosyl radical on Tyr385 in prostaglandin H synthase (PGHS). The Tyr385 radical initiates hydrogen abstraction from arachidonic acid, thereby mechanistically connecting the peroxidase and cyclooxygenase activities. In both PGHS isoforms the tyrosyl radical undergoes a time-dependent transition from a wide doublet to a wide singlet species; pretreatment with cyclooxygenase inhibitors results in a third type of signal, a narrow singlet [Tsai, A.-L.; Kulmacz, R. J. (2000) Prost. Lipid Med. 62, 231-254]. These transitions have been interpreted as resulting from Tyr385 ring rotation, but could also be due to radical migration from Tyr385 to another tyrosine residue. PATHWAYS analysis of PGHS crystal structures identified four tyrosine residues with favorable predicted electronic coupling: residues 148, 348, 404, and 504 (ovine PGHS-1 numbering). We expressed recombinant PGHS-2 proteins containing single Tyr --> Phe mutations at the target residues, a quadruple mutant with all four tyrosines mutated, and a quintuple mutant, which also contains a Y385F mutation. All mutants bind heme and display appreciable peroxidase activity, and with the exception of the quintuple mutant, all retain cyclooxygenase activity, indicating that neither of the active sites is significantly perturbed. Reaction of the Y148F, Y348F, and Y404F mutants with EtOOH generates a wide singlet EPR signal similar to that of native PGHS-2. However, reaction of the Y504F and the quadruple mutants with peroxide yields persistent wide doublets, and the quintuple mutant is EPR silent. Nimesulide pretreatment of Y504F and the quadruple mutant results in an abnormally small amount of wide doublet signal, with no narrow singlet being formed. Therefore, the formation of an alternative tyrosine radical on Tyr504 probably accounts for the transition from a wide doublet to a wide singlet in native PGHS-2 and for formation of a narrow singlet in complexes of PGHS-2 with cyclooxygenase inhibitors.  相似文献   

11.
In an effort to understand the mechanism of radical formation on heme proteins, the formation of radicals on hemoglobin was initiated by reaction with hydrogen peroxide in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The DMPO nitrone adducts were analyzed by mass spectrometry (MS) and immuno-spin trapping. The spin-trapped protein adducts were then subjected to tryptic digestion and MS analyses. When hemoglobin was reacted with hydrogen peroxide (H(2)O(2)) in the presence of DMPO, a DMPO nitrone adduct could be detected by immuno-spin trapping. To verify that DMPO adducts of the protein free radicals had been formed, the reaction mixtures were analyzed by flow injection electrospray ionization mass spectrometry (ESI/MS). The ESI mass spectrum of the hemoglobin/H(2)O(2)/DMPO sample shows one adduct each on both the alpha chain and the beta chain of hemoglobin which corresponds in mass to the addition of one DMPO molecule. The nature of the radicals formed on hemoglobin was explored using proteolysis techniques followed by liquid chromatography/mass spectrometry (LC/MS) and tandem mass spectrometry (MS/MS) analyses. The following sites of DMPO addition were identified on hemoglobin: Cys-93 of the beta chain, and Tyr-42, Tyr-24, and His-20 of the alpha chain. Because of the pi-pi interaction of Tyr-24 and His-20, the unpaired electron is apparently delocalized on both the tyrosine and histidine residue (pi-pi stacked pair radical).  相似文献   

12.
Cytochrome c (cyt c)-derived protein radicals, radical adduct aggregates, and protein tyrosine nitration have been implicated in the pro-apoptotic event connecting inflammation to the development of diseases. During inflammation, one of the reactive oxygen species metabolized via neutrophil activation is hypochlorite (HOCl); destruction of the mitochondrial electron transport chain by hypochlorite is considered to be a damaging factor. Previous study has shown that HOCl induces the site-specific oxidation of cyt c at met-80. In this work, we have assessed the hypothesis that exposure of cyt c to physiologically relevant concentrations of HOCl leads to protein-derived radical and consequent protein aggregation, which subsequently affects cyt c's regulation of nitric oxide metabolism. Reaction intermediates, chemical pathways available for protein aggregation, and protein nitration were examined. A weak ESR signal for immobilized nitroxide derived from the protein was detected when a high concentration of cyt c was reacted with hypochlorite in the presence of the nitroso spin trap 2-methyl-2-nitrosopropane. When a low concentration of cyt c was exposed to the physiologically relevant levels of HOCl in the presence of 5,5-dimethyl-pyrroline N-oxide (DMPO), we detected DMPO nitrone adducts derived from both protein and protein aggregate radicals as assessed by Western blot using an antibody raised against the DMPO nitrone adduct. The cyt c-derived protein radicals formed by HOCl were located on lysine and tyrosine residues, with lysine predominating. Cyt c-derived protein aggregates induced by HOCl involved primarily lysine residues and hydrophobic interaction. In addition, HOCl-oxidized cyt c (HOCl-cyt c) exhibited a higher affinity for NO and enhancement of nonenzymatic NO synthesis from nitrite reduction. Furthermore, HOCl-mediated cyt c oxidation also resulted in a significant elevation of cyt c nitration derived from either NO trapping of the cyt c-derived tyrosyl radical or cyt c-catalyzed one-electron oxidation of nitrite.  相似文献   

13.
The technique of spin trapping is used to study a wide range of free radicals in various systems, including those generated in vitro and in vivo. But unfortunately, EPR spectrometers are not always immediately accessible at the site of experimentation, and therefore it is important to find a method that can preserve a radical adduct over longer periods of time. We describe here an alternative method in which the samples can be frozen and transported for EPR measurements at another site. Various spin adducts of DEPMPO were frozen and measured at 0 degrees C at various intervals after freezing to determine their stability in the frozen state. The radical adducts were generated by established methods and stored at two different temperatures; -196 degrees C (liquid nitrogen) and -80 degrees C (dry ice). The experiments were carried out in an aqueous solution with and without a model of reducing environment (2 mM ascorbate). The results indicate that it is feasible to store and transport spin adducts for subsequent analysis. We conclude that this approach, which we term "distant spin trapping", makes it feasible to transport samples to another site for EPR measurements. This should significantly expand the ability to use spin trapping in biology and medicine.  相似文献   

14.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS) is thought to involve a multistep mechanism with several radical intermediates. The proposed mechanism begins with the transfer of the C13 pro-(S) hydrogen atom from the substrate arachidonic acid (AA) to the Tyr385 radical in PGHS, followed by oxygen insertion and several bond rearrangements. The importance of the hydrogen-transfer step to controlling the overall kinetics of cyclooxygenase catalysis has not been directly examined. We quantified the non-competitive primary kinetic isotope effect (KIE) for both PGHS-1 and -2 using several deuterated AAs, including 13-pro-(S) d-AA, 13,13-d2-AA and 10, 10, 13,13-d4-AA. The primary KIE for steady-state cyclooxygenase catalysis, Dkcat, ranged between 1.8 and 2.3 in oxygen electrode measurements. The intrinsic KIE of AA radical formation by C13 pro-(S) hydrogen abstraction in PGHS-1 was estimated to be 1.9-2.3 using rapid freeze-quench EPR kinetic analysis of anaerobic reactions and computer modeling to a mechanism that includes a slow formation of a pentadienyl AA radical and a rapid equilibration of the AA radical with a tyrosyl radical, NS1c. The observation of similar values for steady-state and pre-steady state KIEs suggests that hydrogen abstraction is a rate-limiting step in cyclooxygenase catalysis. The large difference of the observed KIE from that of plant lipoxygenases indicates that PGHS and lipoxygenases have very different mechanisms of hydrogen transfer.  相似文献   

15.
Soybean lipoxygenase is shown to catalyze the breakdown of polyunsaturated fatty acid hydroperoxides to produce superoxide radical anion as detected by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In addition to the DMPO/superoxide radical adduct, the adducts of peroxyl, acyl, carbon-centered, and hydroxyl radicals were identified in incubations containing linoleic acid and lipoxygenase. These DMPO radical adducts were observed just prior to the system becoming anaerobic. Only a carbon-centered radical adduct was observed under anaerobic conditions. The superoxide radical production required the presence of fatty acid substrates, fatty acid hydroperoxides, active lipoxygenase, and molecular oxygen. Superoxide radical production was inhibited when nordihydroguaiaretic acid, butylated hydroxytoluene, or butylated hydroxyanisole was added to the incubation mixtures. We propose that polyunsaturated fatty acid hydroperoxides are reduced to form alkoxyl radicals and that after an intramolecular rearrangement, the resulting hydroxyalkyl radical reacts with oxygen, forming a peroxyl radical which subsequently eliminates superoxide radical anion.  相似文献   

16.
When rat liver mitochondria are treated with tert-butyl hydroperoxide (TBHP) in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), electron paramagnetic resonance (EPR) signals are detected attributable to spin adducts resulting from the trapping of methyl, tert-butoxyl, and tert-butylperoxyl radicals. The addition of respiratory substrate results in a 3- to 7.5-fold increase in the signal intensity of the DMPO/methyl adduct, no change in the signal intensity of the DMPO/tert-butoxyl adduct, and complete loss of the DMPO/tert-butylperoxyl adduct signal. The magnitude of increase of methyl radical production in the presence of respiratory substrate is related to the respiratory control ratio (RCR) of the mitochondrial preparation. In the presence of antimycin A, which blocks electron flow between cytochromes b and c1, no stimulation of methyl radical production is detected with respiratory substrate. Stimulation of methyl radical production by the addition of respiratory substrate is detected in cytochrome c-depleted mitochondria. A similar increase in methyl radical production is detected when ferrous cytochrome c is treated with TBHP in the presence of DMPO (as compared to when ferricytochrome c is used). These results indicate that TBHP is reduced directly by either cytochrome c1, cytochrome c, or by both of these electron transport chain components in mitochondria undergoing state 4 respiration.  相似文献   

17.
Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radical phenyl ring rotation, or both. Reaction of hPGHS-1 with peroxide produced a wide singlet, whereas its Y504F mutant produced only a wide doublet signal, assigned to the Tyr385 radical. The cyclooxygenase specific activity and KM value for arachidonate of hPGHS-1 were not affected by the Y504F mutation, but the peroxidase specific activity and the KM value for peroxide were increased. The Y385F and Y385F/Y504F mutants retained only a small fraction of the peroxidase activity; the former had a much-reduced yield of peroxide-induced radical and the latter essentially none. After binding of indomethacin, a cyclooxygenase inhibitor, hPGHS-1 produced a narrow singlet but the Y504F mutant did not form a tyrosyl radical. These results indicate that peroxide-induced radicals form on Tyr385 and Tyr504 of hPGHS-1, with radical primarily on Tyr504 in the wild type protein; indomethacin binding prevented radical formation on Tyr385 but allowed radical formation on Tyr504. Thus, hPGHS-1 and -2 have different distributions of peroxide-derived radical between Tyr385 and Tyr504. Y504F mutants in both hPGHS-1 and -2 significantly decreased the cyclooxygenase activation efficiency, indicating that formation of the Tyr504 radical is functionally important for both isoforms.  相似文献   

18.
We have demonstrated with electron paramagnetic resonance (EPR) that organic hydroperoxides are decomposed to free radicals by both human polymorphonuclear leukocytes (PMNs) and purified myeloperoxidase. When tert-butyl hydroperoxide was incubated with either PMNs or purified myeloperoxidase, peroxyl, alkoxyl, and alkyl radicals were trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In the case of ethyl hydroperoxide, DMPO radical adducts of peroxyl and alkyl (identified as alpha-hydroxyethyl when trapped by tert-nitrosobutane) radicals were detected. Radical adduct formation was inhibited when azide was added to the incubation mixture. Myeloperoxidase-deficient PMNs produced DMPO radical adduct intensities at only about 20-30% of that of normal PMNs. Our studies suggest that myeloperoxidase in PMNs is primarily responsible for the decomposition of organic hydroperoxides to free radicals. The finding of the free radical formation derived from organic hydroperoxides by PMNs may be related to the cytotoxicity of this class of compounds.  相似文献   

19.
It is shown by the use of EPR spectroscopy that formation of the hydroxyl radical adduct with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the xanthine-xanthine oxidase system is hydrogen peroxide-independent. Production of the DMPO-hydroxyl radical adduct is inhibited by superoxide dismutase but is unaffected by purified grades of catalase. Hydroxyl radicals are a secondary product of the decomposition of the DMPO-superoxide radical adduct and are also formed as a result of trace metals such as iron present in the buffer. These results are in contrast with a recent report (Kuppusamy, P., and Zweier, J. W. (1989) J. Biol. Chem. 264, 9880-9884) in which the assertion is made that the hydroxyl radical adduct arises from the trapping of hydroxyl radicals generated via the direct reduction of hydrogen peroxide by xanthine oxidase. It is demonstrated here that treatment of phosphate buffer with the chelator deferoxamine mesylate is not in itself sufficient to suppress the effect of contaminating adventitious metal ions in xanthine-xanthine oxidase incubations.  相似文献   

20.
The o-, m-, and p-nitrobenzyl chlorides are reduced aerobically and anaerobically by NADPH and rat hepatic microsomes. Under aerobic conditions, these nitro anion radicals reduce oxygen to superoxide as demonstrated by oxygen consumption and spin trapping of superoxide with 5,5-dimethyl-1-pyrroline N-oxide. At low oxygen concentration, the p- and o-nitro anion radicals undergo intramolecular electron transfer and decompose to carbon-centered nitrobenzyl radicals, which can be spin-trapped with t-nitrosobutane. The p-nitrobenzyl (o-nitrobenzyl) radical adduct was characterized by a nitrogen hyperfine splitting of 16.5 G (17.1 G) and two equivalent beta-hydrogen hyperfine splittings of 10.6 G (14.4 G). The spin trap 5,5-dimethyl-1-pyrroline N-oxide also yields adducts characteristic of carbon-centered free radicals. This unimolecular decomposition is much faster than the disproportionation decay, which is characteristic of most nitro anion radicals, and the primary o- and p-nitrobenzyl chloride anion radicals never achieve detectable concentrations. The nitrobenzyl radical trapping is not inhibited by metyrapone or CO. In contrast, the m-nitrobenzyl anion radical does achieve a detectable steady-state concentration, which is increased 20% by either metyrapone or a CO atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号