首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A screening test was carried out for the purpose of isolating a microorganism which produced a specific proteinase inhibitor for mold metallo-proteinase. A potent strain identified as Streptomyces rishiriensis was isolated, and this inhibitor was named fungal metallo-proteinase inhibitor (FMPI). The strain was aerobically cultured at 25°C for 26–30 hr in shaking flasks with a medium consisting of 1 % meat extract, 1 % polypepton and 0.3% NaCl (about 100 mg/liter). FMPI showed execellent inhibitory activity against the metallo-proteinase of Aspergillus oryzae, and moderate activity against other microbials. FMPI has a low molecular weight and is stable only at alkaline region (pH > 11).  相似文献   

2.
Simple and speedy purification of Aspergillus oryzae metallo-proteinase was performed using Talopeptin-aminohexyl-Sepharose The properties of the metallo-proteinase were: optimum pH 6.5; pH stability, pH 5~11; optimum temperature,50°C; and molecular weight 42,000 (SDS electrophoresis). These results were similar to those of neutral protease I from Aspergillus oryzae reported by Nakadai et al. This metallo-proteinase was compared with others from microbes using the metallo-proteinase inhibitors FMPI, PLT, and Talopeptin. The metallo-proteinase is unique in the point at which FMPI and PLT gave nearly stoichiometrical inhibition.  相似文献   

3.
Some enzymatic properties were examined with the purified alkaline proteinase from Aspergillus candidus. The isoelectric point was determined to be 4.9 by polyacrylamide gel disc electrofocusing. The optimum pH for milk casein was around 11.0 to 11.5 at 30°C. The maximum activity was found at 47°C at pH 7.0 for 10 min. The enzyme was stable between pH 5.0 and 9.0 at 30°C and most stable at pH 6.0 at 50°C. The enzyme activity over 95% remained at 40°C, but was almost completely lost at 60°C for 10 min. Calcium ions protected the enzyme from heat denaturation to some extent. No metal ions examined showed stimulatory effect and Hg2+ ions inhibited the enzyme. The enzyme was also inhibited by potato inhibitor and diisopropylphosphorofluoridate, but not by metal chelating agent or sulfhydryl reagents. A. candidus alkaline proteinase exhibited immunological cross-reacting properties similar to those of alkaline proteinases of A. sojae and A. oryzae.  相似文献   

4.
The ability of Aspergillus nidulans (EIDAM) WINT to grow and sporulate at various temperatures and to degrade soluble and insoluble forms of cellulose were studied. A. nidulans was found to grow and sporulate best at 37°C in continuous light and alternating light-darkness respectively. The fungus was able to cause losses in the dry weights of filter papers on incubation and made appreciable growth on CMC and hemicellulose. The culture filtrates contained cellulases which hydrolysed filter papers and CMC to reducing sugars, and were only able to produce these enzymes in the presence of cellulose or its derivatives in the growth medium. The CM-cellulases had peak activity at pH 5.2 and at 50°C while optimal FP-activity occurred at a pH of 5.5 and at 45°C. The participatory role of A. nidulans in composting is discussed.  相似文献   

5.
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.  相似文献   

6.
Summary During the course of studies on the ecology ofFusarium udum Butler, the incitant of wilt disease of pigeon-pea (Cajanus cajan (L.) Millsp.),Aspergillus nidulans was found to tolerate higher temperatures of summer, and other species includingF. udum were suppressed in field soil. The population ofA. nidulans increased in the soil incubated at 40±2°C at pH6 and 7 while the population ofF. udum was highly suppressed. The wilt disease of pigeon-pea was significantly suppressed at 38±2°C in the soil having a mixture of the inocula ofF. udum andA. nidulans whereas at lower temperature (25±2°C) no significant impact ofA. nidulans on the disease was found. On the basis of this study an integrated use of higher temperature, alkaline pH andA. nidulans has been suggested for biological control of wilt disease of pigeon-pea.  相似文献   

7.
An alkaline proteinase of Aspergillus sydowi (Bainier et Sartory) Thom et Church has been purified approximately 4.5-fold from a culture filtrate by fractionation with ammonium sulfate, treatment with acrynol and Alumina gel Cγ, and DEAE-Sephadex column chromatography. The purified proteinase obtained as needle crystals was monodisperse in both the ultracentrifuge and the electrophoresis on polyacrylamide gel.

The optimum pH and temperature for the activity were 8.0 and 40°C, respectively. Fifty per cent of the activity was lost at 45°C within ten minutes and 95% at 50°C. At 5°C, the enzyme was highly stable at the range of pH 6 to 9. None of metallic salts tested promoted the activity, but Zn++, Ni++ and Hg++ were found to be inhibitory. Sulfhydryl reagent, reducing and oxidizing reagents tested except iodine had no effect on the activity, but potato inhibitor, DFP and NBS caused a marked inhibition.

The alkaline proteinase from Aspergillus sydowi was markedly protected from inactivation by the presence of Ca++ in the enzyme solution. The protective effect of Ca++ was influenced remarkably by the pH values of the enzyme solution, i.e., optimum concentrations of Ca++ for the protective effect at pH 7.1, 7.5 and 7.8 were 10?2, 10?3 and 10?4 M, respectively. Conversely, at higher pH values such as 9.0, Ca++ accelerated the rate of inactivation. There was a parallelism between the loss in activity and the increase in ninhydrin-positive material in the enzyme solution.

The proteinase acted on various denaturated proteins, but not on native proteins. In digestion of casein by the proteinase, 92% of nitrogen was turned into soluble form in 0.2 m trichloroacetic acid solution, with 14~17% of peptide bonds being hydrolyzed. Casein hydrolyzed with the Asp. sydowi proteinase was further hydrolyzed by Pen. chrysogenum, B. subtilis or St. griseus proteinases, which further increased the free amino residues in the reaction mixtures. On the contrary, the Asp. sydowi proteinase reacted only slightly on casein hydrolyzed by the above-mentioned proteinases.  相似文献   

8.
An alkaline proteinase of Aspergillus sulphureus (Fresenius) Thorn et Church has been purified in good yields from wheat bran culture by fractionation with ammonium sulfate, treatment with acrynol, and DEAE-Sephadex A-50 column chromatography. The crystalline preparation was homogeneous on sedimentation analysis and polyacrylamide gel zone electrophoresis. The molecular weight was calculated to be 23,000 by gel filtration. The amino acid composition of the enzyme was determined. The enzyme did not precipitate with acrynol. Optimum pH for the hydrolysis of casein was 7 to 10 at 35°G for 15 min. Optimum temperature was 50°C at pH 7 for 10 min. The enzyme was highly stable at the range of pH 6 to 11 at 5°C, whereas relatively stable at pH 6 to 7 at 35°C. Metalic salts tested did not affect activity. Chelating agents, sulfhydryl reagents, TPCK, and oxidizing or reducing reagents tested, except iodine, had no effect on the activity. Diisopro-pylfluorophosphate and N-bromosuccinimide almost completely inactivated the proteinase.  相似文献   

9.
A hypothetical protein AN1772.2 of Aspergillus nidulans was found to have a 56% identity with a known type C ferulic acid esterase (FAE) from Talaromyces stipitatus. In addition, it contained a 13-amino acid conserved region flanking the characteristic G-X-S-X-G motif of a serine esterase, suggesting a FAE function for the protein. The putative FAE was successfully cloned from the genomic DNA and expressed in Saccharomyces cerevisiae. The recombinant protein exhibited high FAE activities. Therefore, its function as an FAE was unequivocally determined. About 86% of the enzyme activity was found in the growth medium, indicating that the native signal peptide was effective in the yeast expression system. The recombinant FAE was purified to its homogeneity, and subsequently characterized. The FAE is stable over an unusually wide range of pH (4.0–9.5), has a pH optimum of 7.0, and a temperature optimum of 45°C. A substrate specificity profiling reveals that the enzyme is a type B FAE, despite its strong sequence homology with type C FAEs, raising an interesting question on the role of the conserved region in substrate specificity.  相似文献   

10.
11.
Fifty fluorescent pseudomonads were isolated from rhizospheric soil of green gram from nearby area of Kaziranga, Assam, India and assayed for their extracellular proteinase production. Out of these isolates, 20 were found to be prominent in proteinase production. Genetic diversity of the 20 isolates were analyzed through BOX-PCR fingerprinting and 16S rDNA-RFLP along with three reference strains, viz., Pseudomonas fluorescens (NCIM2099T), Pseudomonas aureofaciens (NCIM2026T), and Pseudomonas aeruginosa (MTCC2582T). BOX-PCR produced two distinct clusters at 56% similarity coefficient and seven distinct BOX profiles. 16S rDNA-RFLP with three tetra-cutters restriction enzymes (HaeIII, AluI, and MspI) revealed two major clusters A and B; cluster A contained only single isolate FPS9 while the rest of 22 isolates belonged to the cluster B. Based on phenotypic characters and 16S rDNA sequence similarity, all the eight highly proteinase-producing strains were affiliated with P. aeruginosa. The proteinase was extracted from two most prominent strains (KFP1 and KFP2), purified by a three-step process involving (NH4)2SO4 precipitation, gel filtration, and ion exchange chromatography. The enzyme had an optimal pH of 8.0 and exhibit highest activity at 60°C and 37°C by KFP1 and KFP2 respectively. The specific activities were recorded as 75,050 (for KFP1) and 81,320 U/mg (for KFP2). The purified enzyme was migrated as a single band on native and SDS-PAGE with a molecular mass of 32 kDa. Zn2+, Cu2+, and Ni2+ ion inhibited the enzyme activity. Enzyme activity was also inhibited by EDTA established as their metallo-proteinase nature.  相似文献   

12.
Some enzymatic properties of purified alkaline proteinase from Aspergillus sojae were investigated. The optimum pH for casein digestion was 11.0. The enzyme activity was almost completely lost at 60°C within ten minutes. At low temperature, the enzyme was highly stable at the range of pH 4.5 to 10.0. At 50°C, the most stable pH was around 6.0. None of metallic ions tested promoted the activity, but Hg2+ showed a remarkable inhibition. The Hg2+-treatment seemed to cause a large unfolding of the enzyme molecule. The enzyme was inhibited by potato inhibitor and a number of animal sera. Metal chelating reagents and sulfhydryl reagents tested had no effect on the activity, but DFP caused a marked inhibition. The sensitivity to DFP of the enzyme was about 1/300 of that of α-chymotrypsin. The enzyme was inhibited neither by TPCK nor by TLCK. As the result it was assumed that the structure of the active site of the enzyme is fairly different from that of trypsin, or of chymotrypsin.  相似文献   

13.
The enhancement of the cellulase activity of Aspergillus nidulans by combinational optimization technique and the usage of cellulase for the biofinishing of cotton fibers were investigated in this study. The strain isolated from decayed, outer shell of Arachis hypogaea was compared for the first time for its ability to produce cellulolytic enzyme in shaken cultures using the optimized media formulated by combinational statistical approach using one factor at a time methodology (OFAT), Plackett Burmann Methodology (PB) and response surface methodology (RSM). A four-factor-five-level central composite design (CCD) was employed to determine the maximum activity of cellulase at optimum levels of carboxy methyl cellulose (CMC), ammonium nitrate and potassium dihydrogen phosphate at varying pH values. The cellulase activity is the best so far obtained with this strain of Aspergillus nidulans. The optimum values of the parameters studied were found to be 0.75 mg/l, 1.5 mg/l, 0.01 mg/l, and 2.15 g/l for KH2PO4, NH4NO3, Thiamine HCl and CMC, respectively at pH 6.0. This optimization led to the fine tuning of the cellulase production, thereby enhancing the cellulase activity from 4.91 to 60.54 U/ml. This cellulase of higher activity was employed in the biofinishing of the cotton fibers. The results of the scanning electron microscope (SEM) analysis after the treatment favored the fact that maximum surface finishing was achieved at a cotton fiber concentration of 15% (w/v) at 45°C and pH 5.0 using cellulase (60.54 U/ml) at 16th hour of the treatment. A probable mechanism of enzymatic finishing of cotton fibers has also been represented.  相似文献   

14.
A novel glycoside hydrolase (GH) family 36 α-galactosidase gene (designated PtGal36A) from Paecilomyces thermophila was cloned and expressed in Escherichia coli. The deduced sequence of the gene shared the highest identity of 87% with the characterized α-galactosidase from Aspergillus nidulans FGSC A4. The recombinant enzyme (PtGal36A) was purified to homogeneity with a purification fold of 11.0 and a recovery yield of 55.2%. PtGal36A was most active at pH 5.0 and 60 °C and was stable within the pH range of 4.5-11.5 and up to 50 °C. PtGal36A displayed strict specific activity towards substrates with α-galactosyl linkages in the nonreducing ends, with the highest activity on stachyose (58.5 U/mg), followed by melibiose (39.2 U/mg) and raffinose (31.4 U/mg). The enzyme efficiently hydrolyzed raffinose family oligosaccharides in soybean meal by more than 95%. Moreover, PtGal36A showed excellent resistance (residual activities >90%) against α-chymotrypsin, proteinase K, subtilisin A, trypsin and papain. Therefore, PtGal36A should be a good candidate for the food and feed industries.  相似文献   

15.
A chitinase gene from Bacillus thuringiensis serovar konkukian S4 was cloned, sequenced, and heterologously expressed in Escherichia coli M15. Recombinant enzyme (Chi74) was purified by Ni-NTA affinity column chromatography. The chi74 gene contains an open reading frame (ORF), with a capacity to encode an endochitinase with a deduced molecular weight 74 kDa and predicted isoelectric point of 5.67. Comparison of Chi74 with other chitinases has shown that it contains a modular structure with an N-terminal family 18 catalytic-domain, a Fibronectin-III like domain and a C-terminal carbohydrate binding module (CBM-II). Turn over rate (K cat ) of the enzyme was determined using colloidal chitin (28.3 ± 0.70 S−1) as substrate. The Purified enzyme was active at a broad range of pH (pH 3.5–7.5) and temperature (20–70°C) with a peak activity at pH 5.5 and 55°C. However, the enzyme was found to be stable up to 30°C for longer incubation periods. Moreover, the purified enzyme was shown to inhibit fungal spore germination and hyphal growth in the pathogenic fungi Fusarium oxysporum and Aspergillus niger. These studies will lead us to develop broad spectrum resistance in the crop plants via co-expression of the chitinases and the insecticidal proteins.  相似文献   

16.
An extracellular alkaline serine protease has been purified from a strain of Aspergillus clavatus, to apparent homogeneity, by ammonium sulfate precipitation and chromatography on Sephadex G-75. Its molar mass, estimated by SDS-PAGE, was 35 kDa. Maximum protease activity was observed at pH 9.5 and 40°C. The enzyme was active between pH 6.0 and 11.0 and was found to be unstable up to 50°C. Calcium at 5 mM increased its thermal stability. The protease was strongly inhibited by PMSF and chymostatin as well as by SDS, Tween 80 and carbonate ion. Substrate specificity was observed with N-p-Tos-Gly-Pro-Arg-p-nitroanilide and N-Suc-Ala-Ala-Ala-p-nitroanilide being active substates. Parts of the amino acid sequence were up to 81% homologous with those of several fungal alkaline serine proteases.  相似文献   

17.
A novel intracellular serine proteinase from the marine aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820) that we designated pernilase was purified by ammonium sulfate precipitation, anionic-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified enzyme was composed of a single polypeptide chain with a molecular mass of 50 kDa as determined by SDS-PAGE. The proteinase had a broad pH profile (pH 5–10) with an optimum pH of 9.0 for peptide hydrolysis. The optimum temperature for enzyme activity was 90°C. The enzyme was strongly inhibited by diisopropyl fluorophosphate (DFP) and phenylmethyl sulfonylfluoride (PMSF), suggesting that it corresponds to a serine proteinase. The enzyme was highly resistant to the reducing agents dithiothreitol and 2-mercaptoethanol but sensitive to the denaturing reagents guanidine-HCl and urea and also to the detergent sodium dodecyl sulfate (SDS). Pernilase showed high substrate specificity for Boc-Leu-Gly-Arg-MCA peptide. Thermostability of this enzyme showed half-lives of 85 min at 100°C and 12 min at 110°C. Received September 24, 1997 / Accepted May 20, 1998  相似文献   

18.
The high-molar mass from of β-glucosidase fromAspergillus niger strain NIAB280 was purified to homogeneity with a 46-fold increase in purification by a combination of ammonium sulfate precipitation, hydrophobic interaction, ion-exchange and gel-filtration chromatography. The native and subunit molar mass was 330 and 110 kDa, respectively. The pH and temperature optima were 4.6–5.3 and 70°C, respectively. TheK m andk cat for 4-nitrophenyl β-d-glucopyranoside at 40°C and pH 5 were 1.11 mmol/L and 4000/min, respectively. The enzyme was activated by low and inhibited by high concentrations of NaCl. Ammonium sulfate inhibited the enzyme. Thermolysin periodically inhibited and activated the enzyme during the course of reaction and after 150 min of proteinase treatment only 10% activity was lost with concomitant degradation of the enzyme into ten low-molar-mass active bands. When subjected to 0–9 mol/L transverse urea-gradient-PAGE for 105 min at 12°C, the nonpurified β-glucosidase showed two major bands which denatured at 4 and 8 mol/L urea, respectively, with half-lives of 73 min.  相似文献   

19.
The Aspergillus niger feruloyl esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium with a yield of ~2 mg/l. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography. The specific activity was determined to be 8,200 U/μg (pH 6.5, 20°C, 3.5 mM 4-nitrophenyl ferulate). The protein had a correct N-terminal sequence of ASTQGISEDLY, indicating that the signal peptide was properly processed. The FAE exhibited an optimum pH of 6–7 and operated optimally at 50°C using ground switchgrass as the substrate. The yeast clone was demonstrated to catalyze the release of ferulic acid continuously from switchgrass in YNB medium at 30°C. This work represents the first report on engineering yeast for the breakdown of ferulic acid crosslink to facilitate consolidated bioprocessing.  相似文献   

20.
The present study investigates the efficiency of Aspergillus niger to produce invertase, an industrially important enzyme by using powdered stem of Cympopogan caecius (Lemon grass) as sole substrate and sole carbon source for the microorganism. The molecular weight of invertase was estimated to be 66–70 kDa by sodium do decyl sulphate poly acrylamide gel electrophoresis (SDS PAGE). The production of the enzyme was studied at different pH scales ranging from pH 4.0 to 7.0 at a constant temperature of 30°C and 2% substrate concentration. The maximum production of invertase (specific activity −0.0516 μk/mg protein) was obtained at pH 5.5 at 30°C temperature, and incubation for 48 h. The activity was found to be stable at pH 5.5 for 30 min. The enzyme was found to be stable in the temperature range of 20–55°C. The effect of divalent metal ions Cu2+, Fe2+, Co2+ on the activity of the enzyme invertase showed that these ions affected the activity by a certain factor. The study can be further industrially exploited in a country-like India where lemon grass is found in plenty and can be used as substrate for enzyme production. Moreover, the preparation of the substrate is also a simple process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号