首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The approximately 50 known chemokines are classified in distinct subfamilies: CXC, CC, CX3C, and C. Although the signaling of chemokines often is promiscuous, signaling events between members of these distinct chemokine classes are hardly observed. The only known exception so far is the murine CC chemokine ligand (CCL)21 (secondary lymphoid tissue chemokine, Exodus-2, 6Ckine), which binds and activates the murine CXC chemokine receptor CXCR3. However, this exception has not been found in humans. In this study, we provide evidence that human CCL21 is a functional ligand for endogenously expressed CXCR3 in human adult microglia. In absence of CCR7 expression, CCL21 induced chemotaxis of human microglia with efficiency similar to the CXCR3 ligands CXC chemokine ligand 9 (monokine induced by IFN-gamma) and CXC chemokine ligand 10 (IFN-gamma-inducible protein-10). Because human CCL21 did not show any effects in CXCR3-transfected HEK293 cells, it is indicated that CXCR3 signaling depends on the cellular background in which the CXCR3 is expressed.  相似文献   

2.
The CXC chemokine CXCL13, known as BCA-1 (B cell-attracting chemokine 1) or BLC (B-lymphocyte chemoattractant), has been identified as an efficacious attractant selective for B lymphocytes. The chemokine receptor BLR1 (Burkitt's lymphoma receptor 1)/CXCR5 expressed by all mature B cells has to date been identified as the only known receptor for BCA-1. As the loss of the BLR1/CXCR5 receptor is sufficient to disrupt organization of follicles in spleen and Peyer's patches, BCA-1 may act as a B cell homing chemokine. Nonetheless, BCA-1 has not been tested against all known chemokine receptors. In this study, we report that human BCA-1 competes with radiolabeled interferon gamma (IFN-gamma) inducible protein 10 (IP-10) for binding to the human CXCR3 receptor expressed in Ba/F3 and 293EBNA cell lines. Furthermore, human BCA-1 is an efficacious attractant for human CXCR3 transfected cells; BCA-1-induced chemotaxis is inhibited by a monoclonal antibody against human CXCR3. In these cells, as in human B lymphocytes expressing CXCR5, BCA-1 does not induce a calcium flux. Indeed, BCA-1 attenuates the calcium flux induced by IP-10. In addition, human BCA-1 is an agonist in stimulating GTP gamma S binding. Together these data suggest that human BCA-1 is a specific and functional G-protein-linked chemotactic ligand for the human CXCR3 receptor. The biological significance of this new finding is supported by our recent observation that human BCA-1 induces chemotaxis of activated T cells and the BCA-1-induced chemotaxis is inhibited by a monoclonal antibody against human CXCR3.  相似文献   

3.
Mouse 6Ckine/SLC (secondary lymphoid tissue chemokine) is a chemotactic factor for dendritic cells, T cells, and NK cells in vitro. In addition, mouse 6Ckine/SLC interacts with the chemokine receptor CXCR3, as do several chemokines with antiangiogenic properties. These dual properties of mouse 6Ckine/SLC were tested for the induction of an antitumor response by transducing the C26 colon carcinoma tumor cell line with a cDNA encoding mouse 6Ckine/SLC. The C26-6CK-transduced cells showed reduced tumorigenicity in immunocompetent or in nude mice. Part of this effect was likely due to angiostatic mechanisms as shown by immunohistochemistry and Matrigel assay. C26-6CK tumors were also heavily infiltrated with leukocytes, including granulocytes, dendritic cells, and CD8+ T cells. In vivo, anti-CD8 treatment increased the tumorigenicity of the C26-6CK tumor cells, and tumor-infiltrating CD8+ T cells had the phenotype of memory effector cells, suggesting the induction of cytotoxic tumor-specific T lymphocytes. On the other hand, anti-asialo-GM1 depletion also increased the tumorigenicity of C26-6CK cells, supporting the participation of NK cells. Finally, tumor-infiltrating dendritic cells had the phenotype and functional features of immature dendritic cells. Overall, these results suggest that mouse 6Ckine/SLC has strong antitumor effects by inducing both angiostatic, CD8+ T cell-mediated, and possibly NK-mediated tumor resistance mechanisms.  相似文献   

4.
We systematically examined the repertoire of chemokine receptors expressed by human plasma cells. Fresh bone marrow plasma cells and myeloma cells consistently expressed CXCR4, CXCR6, CCR10, and CCR3. Accordingly, plasma cells responded to their respective ligands in chemotaxis and very late Ag-4-dependent cell adhesion to fibronectin. Immobilized CXC chemokine ligand (CXCL)16, a novel transmembrane-type chemokine and CXCR6 ligand, also directly induced adhesion of plasma cells without requiring G(alpha i) signaling or divalent cations. Furthermore, we revealed consistent expression of CXCL12 (CXCR4 ligand), CXCL16 (CXCR6 ligand), and CC chemokine ligand 28 (CCR10 and CCR3 ligand) in tissues enriched with plasma cells including bone marrow, and constitutive expression of CXCL12, CXCL16, and CC chemokine ligand 28 by cultured human bone marrow stromal cells. Collectively, plasma cells are likely to be recruited to bone marrow and other target tissues via CXCR4, CXCR6, CCR10, and CCR3. CXCR6 may also contribute to tissue localization of plasma cells through its direct binding to membrane-anchored CXCL16.  相似文献   

5.
Autoimmunity plays a key role in the immunopathogenesis of psoriasis; however, little is known about the recruitment of pathogenic cells to skin lesions. We report here that the CC chemokine, macrophage inflammatory protein-3 alpha, recently renamed CCL20, and its receptor CCR6 are markedly up-regulated in psoriasis. CCL20-expressing keratinocytes colocalize with skin-infiltrating T cells in lesional psoriatic skin. PBMCs derived from psoriatic patients show significantly increased CCR6 mRNA levels. Moreover, skin-homing CLA+ memory T cells express high levels of surface CCR6. Furthermore, the expression of CCR6 mRNA is 100- to 1000-fold higher on sorted CLA+ memory T cells than other chemokine receptors, including CXCR1, CXCR2, CXCR3, CCR2, CCR3, and CCR5. In vitro, CCL20 attracted skin-homing CLA+ T cells of both normal and psoriatic donors; however, psoriatic lymphocytes responded to lower concentrations of chemokine and showed higher chemotactic responses. Using ELISA as well as real-time quantitative PCR, we show that cultured primary keratinocytes, dermal fibroblasts, and dermal microvascular endothelial and dendritic cells are major sources of CCL20, and that the expression of this chemokine can be induced by proinflammatory mediators such as TNF-alpha/IL-1 beta, CD40 ligand, IFN-gamma, or IL-17. Taken together, these findings strongly suggest that CCL20/CCR6 may play a role in the recruitment of T cells to lesional psoriatic skin.  相似文献   

6.
Some pathways of T cell differentiation are associated with characteristic patterns of chemokine receptor expression. A new lineage of effector/memory CD4+ T cells has been identified whose signature products are IL-17 cytokines and whose differentiation requires the nuclear receptor, RORgammat. These Th17 cells are critical effectors in mouse models of autoimmune disease. We have analyzed the association between chemokine receptor expression and IL-17 production for human T cells. Activating cord blood (naive) CD4+ T cells under conditions driving Th17 differentiation led to preferential induction of CCR6, CCR9, and CXCR6. Despite these data, we found no strong correlation between the production of IL-17 and expression of CCR9 or CXCR6. By contrast, our analyses revealed that virtually all IL-17-producing CD4+ T cells, either made in our in vitro cultures or found in peripheral blood, expressed CCR6, a receptor found on approximately 50% of CD4+ memory PBL. Compared with CD4+CD45RO+CCR6- cells, CD4+CD45RO+CCR6+ cells contained at least 100-fold more IL-17A mRNA and secreted 100-fold more IL-17 protein. The CCR6+ cells showed a similar enrichment in mRNA for RORgammat. CCR6 was likewise expressed on all IL-17-producing CD8+ PBL. CCR6 has been associated with the trafficking of T, B, and dendritic cells to epithelial sites, but has not been linked to a specific T cell phenotype. Our data reveal a fundamental feature of IL-17-producing human T cells and a novel role for CCR6, suggesting both new directions for investigating IL-17-related immune responses and possible targets for preventing inflammatory injury.  相似文献   

7.
The recruitment of bone marrow CD34- mesenchymal stem- and progenitor cells (MSC) and their subsequent differentiation into distinct tissues is the precondition for in situ tissue engineering. The objective of this study was to determine the entire chemokine receptor expression profile of human MSC and to investigate their chemotactic response to the selected chemokines CCL2, CXCL8 and CXCL12. Human MSC were isolated from iliac crest bone marrow aspirates and showed a homogeneous population presenting a typical MSC-related cell surface antigen profile (CD14-, CD34-, CD44+, CD45-, CD166+, SH-2+). The expression profile of all 18 chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that MSC express CC, CXC, C and CX(3)C receptors. Gene expression and immunohistochemical analysis documented that MSC express chemokine receptors CCR2, CCR8, CXCR1, CXCR2 and CXCR3. A dose-dependent chemotactic activity of CXCR4 and CXCR1/CXCR2 ligands CXCL12 and CXCL8 (interleukin-8) was demonstrated using a 96-well chemotaxis assay. In contrast, the CCR2 ligand CCL2 (monocyte chemoattractant protein-1, MCP-1) did not recruited human MSC. In conclusion, we report that the chemokine receptor expression profile of human MSC is much broader than known before. Furthermore, for the first time, we demonstrate that human MSC migrate upon stimulation with CXCL8 but not CCL2. In combination with already known data on MSC recruitment and differentiation these are promising results towards in situ regenerative medicine approaches based on guiding of MSC to sites of degenerated tissues.  相似文献   

8.
HIV-1 infects target cells via a receptor complex formed by CD4 and a chemokine receptor, primarily CCR5 or CXCR4 (ref. 1). Commonly, HIV-1 transmission is mediated by CCR5-tropic variants, also designated slow/low, non-syncytia-inducer or macrophage-tropic, which dominate the early stages of HIV-1 infection and frequently persist during the entire course of the disease. In contrast, HIV-1 variants that use CXCR4 are typically detected at the later stages, and are associated with a rapid decline in CD4+ T cells and progression to AIDS (refs. 2,7-11). Disease progression is also associated with the emergence of concurrent infections that may affect the course of HIV disease by unknown mechanisms. A lymphotropic agent frequently reactivated in HIV-infected patients is human herpesvirus 6 (HHV-6), which has been proposed as a cofactor in AIDS progression. Here we show that in human lymphoid tissue ex vivo, HHV-6 affects HIV-1 infection in a coreceptor-dependent manner, suppressing CCR5-tropic but not CXCR4-tropic HIV-1 replication, as shown with both uncloned viral isolates and isogenic molecular chimeras. Furthermore, we demonstrate that HHV-6 increases the production of the CCR5 ligand RANTES ('regulated upon activation, normal T-cell expressed and secreted'), the most potent HIV-inhibitory CC chemokine, and that exogenous RANTES mimics the effects of HHV-6 on HIV-1, providing a mechanism for the selective blockade of CCR5-tropic HIV-1. Our data suggest that HHV-6 may profoundly influence the course of HIV-1 infection.  相似文献   

9.
To investigate the regulation of the CCR1 chemokine receptor, a rat basophilic leukemia (RBL-2H3) cell line was modified to stably express epitope-tagged receptor. These cells responded to RANTES (regulated upon activation normal T expressed and secreted), macrophage inflammatory protein-1alpha, and monocyte chemotactic protein-2 to mediate phospholipase C activation, intracellular Ca(2+) mobilization and exocytosis. Upon activation, CCR1 underwent phosphorylation and desensitization as measured by diminished GTPase stimulation and Ca(2+) mobilization. Alanine substitution of specific serine and threonine residues (S2 and S3) or truncation of the cytoplasmic tail (DeltaCCR1) of CCR1 abolished receptor phosphorylation and desensitization of G protein activation but did not abolish desensitization of Ca(2+) mobilization. S2, S3, and DeltaCCR1 were also resistant to internalization, mediated greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization, and were only partially desensitized by RANTES, relative to S1 and CCR1. To study CCR1 cross-regulation, RBL cells co-expressing CCR1 and receptors for interleukin-8 (CXCR1, CXCR2, or a phosphorylation-deficient mutant of CXCR2, 331T) were produced. Interleukin-8 stimulation of CXCR1 or CXCR2 cross-phosphorylated CCR1 and cross-desensitized its ability to stimulate GTPase activity and Ca(2+) mobilization. Interestingly, CCR1 cross-phosphorylated and cross-desensitized CXCR2, but not CXCR1. Ca(2+) mobilization by S3 and DeltaCCR1 were also cross-desensitized by CXCR1 and CXCR2 despite lack of receptor phosphorylation. In contrast to wild type CCR1, S3 and DeltaCCR1, which produced sustained signals, cross-phosphorylated and cross-desensitized responses to CXCR1 as well as CXCR2. Taken together, these results indicate that CCR1-mediated responses are regulated at several steps in the signaling pathway, by receptor phosphorylation at the level of receptor/G protein coupling and by an unknown mechanism at the level of phospholipase C activation. Moreover selective cross-regulation among chemokine receptors is, in part, a consequence of the strength of signaling (i.e. greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization) which is inversely correlated with the receptor's susceptibility to phosphorylation. Since many chemokines activate multiple chemokine receptors, selective cross-regulation among such receptors may play a role in their immunomodulation.  相似文献   

10.
The structure of IP-10 was solved by NMR spectroscopy and represents the first structure from the class of agonists toward the receptor CXCR3. CXCR3 binding chemokines are unique in their ability to bind receptors from both the CC and CXC classes of chemokine receptors. An unusual structural feature of IP-10 was identified that may provide the basis for the ability of IP-10 to bind both CXCR3 and CCR3. The surface of IP-10 that interacts with the N-terminus of CXCR3 was defined by monitoring changes in the NMR spectrum of IP-10 upon addition of a CXCR3 N-terminal peptide. These studies indicated that the interaction involves a hydrophobic cleft, formed by the N-loop and 40s-loop region of IP-10, similar to the interaction surface observed for other chemokines such as IL-8. An additional region of interaction was observed that consists of a hydrophobic cleft formed by the N-terminus of IP-10 and 30s-loop of IP-10.  相似文献   

11.
Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.  相似文献   

12.
The chemokine-like, secreted protein product of the U83 gene from human herpesvirus 6, here named vCCL4, was chemically synthesized to be characterized in a complete library of the 18 known human chemokine receptors expressed individually in stably transfected cell lines. vCCL4 was found to cause calcium mobilization as efficiently as the endogenous chemokine ligand CCL2 through the CCR2 receptor, whereas the virally encoded chemokine did not affect any of the other 17 human chemokine receptors tested. Mutual cross-desensitization between CCL2 and vCCL4 was demonstrated in the CCR2-transfected cells. The affinity of vCCL4 for the CCR2 receptor was 79 nm as determined in competition binding against radioactively labeled CCL2. In the murine pre-B lymphocyte cell line L1.2 stably transfected with the CCR2 receptor, vCCL4 acted as a relatively low potency but highly efficacious chemoattractant being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages and monocytes, conceivably for the virus to infect and to establish latency in. It is suggested that vCCL4 during reactivation of the virus in for example monocyte-derived microglia could perhaps be involved in the pathogenesis of the CCR2-dependent disease, multiple sclerosis.  相似文献   

13.
Dendritic cell migration to secondary lymphoid tissues is critical for Ag presentation to T cells necessary to elicit an immune response. Despite the importance of dendritic cell trafficking in immunity, at present little is understood about the mechanisms that underlie this phenomenon. Using a novel transwell chemotaxis assay system, we demonstrate that the CC chemokine receptor-7 (CCR7) ligands 6Ckine and macrophage inflammatory protein (MIP)-3 beta are selective chemoattractants for MHC class IIhigh B7-2high bone marrow-derived dendritic cells at a potency 1000-fold higher than their known activity on naive T cells. Furthermore, these chemokines stimulate the chemotaxis of freshly isolated lymph node dendritic cells, as well as the egress of skin dendritic cells ex vivo. Because these chemokines are expressed in lymphoid organs and 6Ckine has been localized to high endothelial venules and lymphatic endothelium, we propose that they may play an important role in the homing of dendritic cells to lymphoid tissues.  相似文献   

14.
The use of chemokine receptors as cell recognition signals is a property common to several lentiviruses, including feline, human, and simian immunodeficiency viruses. Previously, two feline immunodeficiency virus (FIV) isolates, V1CSF and Petaluma, were shown to use chemokine receptors in a strain-dependent manner to infect human peripheral blood mononuclear cells (PBMC) (J. Johnston and C. Power, J. Virol. 73:2491-2498, 1999). Since the sequences of these viruses differed primarily in regions of the FIV envelope gene implicated in receptor use and cell tropism, envelope chimeras of V1CSF and Petaluma were constructed to investigate the role of envelope diversity in the profiles of chemokine receptors used by FIV to infect primate cells. By use of a receptor-blocking assay, all viruses were found to infect human and macaque PBMC through a mechanism involving the CXCR4 receptor. However, infection by viruses encoding the V3-to-V5 region of the V1CSF surface unit was also inhibited by blockade of the CCR3 or CCR5 receptor. Similar results were obtained with GHOST cells, human osteosarcoma cells expressing specific combinations of chemokine receptors. CXCR4 was required for infection by all FIV strains, but viruses expressing the V3-to-V5 region of V1CSF required the concurrent presence of either CCR3 or CCR5. In contrast, CXCR4 alone was sufficient to allow infection of GHOST cells by FIV strains possessing the V3-to-V5 region of Petaluma. To assess the role of primate chemokine receptors in productive infection, Crandell feline kidney (CrFK) cells that expressed human CXCR4, CCR3, or CCR5 in addition to feline CXCR4 were generated. Sustained infection by viruses encoding the V3-to-V5 region of V1CSF was detected in CrFK cells expressing human CCR3 or CCR5 but not in cells expressing CXCR4 alone, while all CrFK cell lines were permissive to viruses encoding the V3-to-V5 region of Petaluma. These results indicate that FIV uses chemokine receptors to infect both human and nonhuman primate cells and that the profiles of these receptors are dependent on envelope sequence, and they provide insights into the mechanism by which xenoinfections may occur.  相似文献   

15.
Human macrophage inflammatory protein-3alpha (MIP-3alpha; CCL20) is a CC-type chemokine that binds to and activates CC chemokine receptor-6 (CCR6). Although MIP-3alpha does not share the binding site of CCR6 with any other chemokine, human beta-defensin-1 and -2, small cationic antimicrobial peptides, have also been found to bind to and activate CCR6. Conversely, we have found that MIP-3alpha possesses antibacterial activity of greater potency than human beta-defensin-1 and -2 against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, while having no activity against the fungus Candida albicans. There is no clear sequence similarity between beta-defensins and the chemokine MIP-3alpha, beyond an abundance of cationic residues and the presence of disulfide bonds. Nonetheless, there are structural similarities between these three proteins that allow their overlap of chemotactic and antimicrobial activities. In this report, we describe the x-ray crystal structure of human MIP-3alpha refined to a resolution of 1.7 A and compare it with the crystal structures of human beta-defensin-1 and -2. Molecules of MIP-3alpha and the beta-defensins seem to share few structural motifs that are likely associated with their common biological activities.  相似文献   

16.
CCR6 is the only known receptor for the chemokine macrophage-inflammatory protein (MIP)-3alpha/CC chemokine ligand (CCL)20. We have shown previously that CCR6 is expressed on peripheral blood B cells, but CCR6 activity on these cells is low in in vitro assays. We report that MIP-3alpha/CCL20-induced calcium flux and chemotaxis can be enhanced significantly on peripheral blood and tonsillar B cells after activation by cross-linking surface Ag receptors. Of particular interest is the fact that the enhanced activity on B cells was not associated with an increase in CCR6 expression as assessed by levels of receptor mRNA, surface staining, or MIP-3alpha/CCL20 binding sites, or by a change in the affinity of the receptor for ligand. These data convincingly demonstrate that responses to a chemokine can be regulated solely by changes in the downstream pathways for signal transduction resulting from Ag receptor activation, and establish CCR6 as an efficacious receptor on human B cells.  相似文献   

17.
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand.  相似文献   

18.
Zhou N  Luo Z  Luo J  Hall JW  Huang Z 《Biochemistry》2000,39(13):3782-3787
The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus is unique among all known chemokines in that vMIP-II shows a broad-spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cell entry of human immunodeficiency virus type 1 (HIV-1). To elucidate the mechanism of the promiscuous receptor interaction of vMIP-II, synthetic peptides derived from the N-terminus of vMIP-II were studied. In contrast to the full-length protein that recognizes both CXCR4 and CCR5, a peptide corresponding to residues 1-21 of vMIP-II (LGASWHRPDKCCLGYQKRPLP) was shown to strongly bind CXCR4, but not CCR5. The IC(50) of this peptide in competing with CXCR4 binding of (125)I-SDF-1alpha is 190 nM as compared to the IC(50) of 14.8 nM of native vMIP-II in the same assay. The peptide selectively prevented CXCR4 signal transduction and coreceptor function in mediating the entry of T- and dual-tropic HIV-1 isolates, but not those of CCR5. Further analysis of truncated peptide analogues revealed the importance of the first five residues for the activity with CXCR4. These results suggest that the N-terminus of vMIP-II is essential for its function via CXCR4. In addition, they reveal a possible mechanism for the distinctive interactions of vMIP-II with different chemokine receptors, a notion that may be further exploited to dissect the structural basis of its promiscuous biological function. Finally, the potent CXCR4 peptide antagonist shown here could serve as a lead for the development of new therapeutic agents for HIV infection and other immune system diseases.  相似文献   

19.
Human allergic asthma is a chronic inflammatory disease of the airways thought to be driven by allergen-specific Th2 cells, which are recruited into the lung in response to inhaled allergen. To identify chemoattractant receptors that control this homing pattern, we used endobronchial segmental allergen challenge in human atopic asthmatics to define the pattern of chemoattractant receptor expression on recruited T cells as well as the numbers of recruited CD1d-restricted NKT cells and levels of chemokines in the bronchoalveolar (BAL) fluid. CD1d-restricted NKT cells comprised only a small minority of BAL T cells before or after Ag challenge. BAL T cells were enriched in their expression of specific chemoattractant receptors compared with peripheral blood T cells prechallenge, including CCR5, CCR6, CXCR3, CXCR4, and BLT1. Surprisingly, following segmental allergen challenge, no chemoattractant receptor was specifically increased. However, CCR6 and CXCR3, which were expressed on virtually all CD4(+) BAL T cells prechallenge, were markedly decreased on all recruited BAL T cells following Ag challenge, suggesting that these receptors were internalized following encounter with ligand in the airway. Our data therefore suggests a role for CCR6 and CXCR3, in conjunction with other chemoattractant receptors, in the recruitment of inflammatory T cells into the BAL during the allergic asthmatic response.  相似文献   

20.
Searching for new receptors of dendritic cell- and T cell-active chemokines, we used a combination of techniques to interrogate orphan chemokine receptors. We report here on human CCX CKR, previously represented only by noncontiguous expressed sequence tags homologous to bovine PPR1, a putative gustatory receptor. We employed a two-tiered process of ligand assignment, where immobilized chemokines constructed on stalks (stalkokines) were used as bait for adhesion of cells expressing CCX CKR. These cells adhered to stalkokines representing ELC, a chemokine previously thought to bind only CCR7. Adhesion was abolished in the presence of soluble ELC, SLC (CCR7 ligands), and TECK (a CCR9 ligand). Complete ligand profiles were further determined by radiolabeled ligand binding and competition with >80 chemokines. ELC, SLC, and TECK comprised high affinity ligands (IC50 <15 nM); lower affinity ligands include BLC and vMIP-II (IC50 <150 nM). With its high affinity for CC chemokines and homology to CC receptors, we provisionally designate this new receptor CCR10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号