首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Semen cryopreservation is an important technique for the banking of animal germplasm from endangered species and exploitation of genetically superior sires through artificial insemination. Being a member of bovidae family, bison semen has poor freezing ability as compared to dairy and beef bulls' semen. This study was designed to quantify the damage to bison sperm at different stages of cryopreservation, and to determine the effects of extender (commercial Triladyl(?) vs. custom made tris-citric acid [TCA]) and freeze rate (-10, -25 and -40°C/min) on post-thaw quality of bison semen. Semen was collected from five bison bulls (three woods and two plains) via electroejaculation. In Experiment 1, semen was diluted in Triladyl? extender and frozen with freeze rate -10°C/min. Sperm motility characteristics were recorded in fresh, diluted, cooled (4°C) and freeze-thawed semen using computer-assisted sperm analyzer (CASA). In Experiment 2, semen was diluted in Triladyl? or TCA extender, and frozen with three different freeze rates, i.e. -10, -25 or -40°C/min. Thawing was performed at 37°C for 60s. Post-thaw sperm motility characteristics were assessed using CASA, and sperm structural characteristics (plasma membrane, mitochondrial membrane potential and acrosomes) were evaluated using flow cytometer, at 0 and 3h while incubating semen at 37°C. In Experiment 1, total and progressive motilities did not differ among pre-freeze stages of cryopreservation (P>0.05). However, sperm total and progressive motilities declined (P<0.001) in freeze-thawed semen by 35% and 42%, respectively, compared to after cooling (pre-freeze) semen. In Experiment 2, Triladyl?, as compared to TCA, yielded greater (P<0.05) post-thaw sperm total motility (41% compared to 36%) and progressive motility (34% compared to 29%) at 0h, respectively. The percent change in post-thaw sperm total and progressive motilities, VAP, VCL, VSL, IPM-high ΔΨm and IPM-IACR during 3h incubation at 37°C, was less (P<0.05) in TCA than in Triladyl?. There was an effect of freeze rate on post-thaw sperm average path velocity at 0h, and total motility, progressive motility, VCL, IPM and IPM-IACR at 3h were the greatest (P<0.05) when bison semen was frozen at -40°C/min. Likewise, the percent change in post-thaw sperm total and progressive motilities, during 3h incubation at 37°C, was less (P<0.05) in bison semen frozen at -40°C/min. All post-thaw bison sperm characteristics decreased (P<0.05) from 0h to 3h, during incubation at 37°C. In conclusion, the maximum damage to bison sperm occurred during freeze-thaw processes. Post-thaw total and progressive motilities of bison sperm were greater in Triladyl? at 0h whereas sperm survival was greater in TCA extender during 3h post-thaw incubation. Bison sperm had greater survival (P<0.05) when frozen at -40°C/min freeze rate.  相似文献   

2.
Alternative techniques for the cryopreservation of kangaroo spermatozoa that reduced or eliminated the need for glycerol were investigated including; (1) freezing spermatozoa with 20% glycerol in pre-packaged 0.25 mL Cassou straws to enable rapid dilution of the glycerol post-thaw, (2) investigating the efficacy of 20% (v/v) dimethyl sulphoxide (DMSO) and dimethylacetamide (DMA—10%, 15% and 20% v/v) as cryoprotectants and (3) vitrification of spermatozoa with or without cryoprotectant (20% v/v glycerol, 20% v/v DMSO and 20% v/v DMA). Immediate in-straw post-thaw dilution of 20% glycerol and cryopreservation of spermatozoa in 20% DMSO produced no significant improvement in post-thaw viability of kangaroo spermatozoa. Spermatozoa frozen in 20% DMA showed post-thaw motility and plasma membrane integrity of 12.7 ± 1.9% and 22.7 ± 5.4%, respectively, while kangaroo spermatozoa frozen by ultra-rapid freezing techniques showed no evidence of post-thaw viability. The use of 10–20% DMA represents a modest but significant improvement in the development of a sperm cryopreservation procedure for kangaroos.  相似文献   

3.
A comparative approach was used to evaluate the cryosurvival of turkey and crane sperm frozen in a dimethylacetamide (DMA) cryodiluent supplemented with osmoprotectants and ATP. A range (6-26%) of DMA concentrations was used alone or in combination with ATP (30, 60 or 118mM) or one of the following osmoprotectants: (1) sucrose (turkey, 8.0%; crane, 5.0%); (2) 5.0% sucrose and 5.0% trehalose; or (3) betaine hydrochloride (0.1, 0.2 or 0.4mM). The viability of thawed sperm was assessed using the nigrosin-eosin stain and sperm motility was determined using the hanging-drop technique. For semen frozen only with DMA, post-thaw sperm motility was greatest (P<0.05) for the 6.0%, 10.0% and 18% concentrations, regardless of species. Turkey sperm frozen with the sucrose/trehalose combination had greater (P<0.05) post-thaw motility for all DMA treatments compared to DMA alone. The lowest concentration of the osmoprotectant betaine hydrochloride substantially improved turkey sperm viability post-thaw in all treatments compared to DMA alone (P<0.05). The post-thaw motility of crane sperm was improved (P<0.05) with a combination of 18.0%, 24.0% or 26.0% DMA and 30mM ATP. Moreover, in the presence of osmoprotectants, crane sperm motility decreased as the osmoprotectant concentration increased. The lowest concentration of ATP also improved crane sperm viability post-thaw, especially for DMA concentrations 18% or greater. The combination of sucrose and trehalose improved (P<0.05) crane sperm viability only with 6% and 10% DMA. These data affirm that there are avian-specific differences in sperm survival after cryopreservation and suggest that post-thaw survival can be enhanced by including species-based osmoprotectant/ATP combinations in a cryodiluent where DMA is the cryoprotectant.  相似文献   

4.
《Cryobiology》2009,58(3):304-307
Alternative techniques for the cryopreservation of kangaroo spermatozoa that reduced or eliminated the need for glycerol were investigated including; (1) freezing spermatozoa with 20% glycerol in pre-packaged 0.25 mL Cassou straws to enable rapid dilution of the glycerol post-thaw, (2) investigating the efficacy of 20% (v/v) dimethyl sulphoxide (DMSO) and dimethylacetamide (DMA—10%, 15% and 20% v/v) as cryoprotectants and (3) vitrification of spermatozoa with or without cryoprotectant (20% v/v glycerol, 20% v/v DMSO and 20% v/v DMA). Immediate in-straw post-thaw dilution of 20% glycerol and cryopreservation of spermatozoa in 20% DMSO produced no significant improvement in post-thaw viability of kangaroo spermatozoa. Spermatozoa frozen in 20% DMA showed post-thaw motility and plasma membrane integrity of 12.7 ± 1.9% and 22.7 ± 5.4%, respectively, while kangaroo spermatozoa frozen by ultra-rapid freezing techniques showed no evidence of post-thaw viability. The use of 10–20% DMA represents a modest but significant improvement in the development of a sperm cryopreservation procedure for kangaroos.  相似文献   

5.
In the Canadian Animal Genetic Resource Program, bull semen is donated in frozen or fresh (diluted) states. This study was designed to assess the cryopreservation of diluted bull semen shipped at 4°C overnight, and to determine the post-thaw quality of shipped semen using different straw volumes and freezing rates. Semen was collected from four breeding bulls (three ejaculates per bull). Semen was diluted in Tris-citric acid-egg yolk-glycerol (TEYG) extender, cooled to 4°C and frozen as per routine (control semen). After cooling to 4°C, a part of semen was removed and shipped overnight to the research laboratory via express courier (shipped semen). Semen was packaged in 0.25 or 0.5 ml straws and frozen in a programmable freezer using three freezing rates, i.e., -10, -25 or -40°C/min. Control semen was also shipped to the research laboratory. Post-thaw sperm motility characteristics were assessed using CASA, and post-thaw sperm plasma membrane, mitochondrial membrane potential and normal acrosomes were assessed using flow cytometry. Post-thaw sperm quality was greater in shipped semen as compared to control (P<0.001). The shipped semen packaged in 0.25 ml straws had better post-thaw sperm quality than in 0.5 ml straws (P<0.001). Freezing rate had no effect on post-thaw sperm quality. In conclusion, bull semen can be shipped overnight for subsequent cryopreservation and gene banking. Overnight shipping of semen was found advantageous for bull semen cryopreservation. Semen packaging in 0.25 ml straws yielded better post-thaw quality than 0.5 ml straws.  相似文献   

6.
Human spermatozoa cryopreservation is an important means of assisted reproductive technology and male fertility preservation. Although this technique is particularly useful, sperm cryopreservation significantly reduces the quality of spermatozoa after freezing and thawing. The objective of the study is to examine the efficacy of mitochondria-targeted antioxidant MitoTEMPO in improving sperm quality during semen cryopreservation processes. Semen samples were collected and cryopreserved in extenders containing different concentrations (0.0, 0.5, 5, 50, and 500 μM) of MitoTEMPO. Sperm motility, viability, membrane integrity, mitochondrial membrane potential and antioxidant activities were measured and analyzed. The results showed that the addition of MitoTEMPO (5–50 μM) significantly improved post-thaw sperm motility, viability, membrane integrity and mitochondrial membrane potential (P < .05). Meanwhile, antioxidant enzymes activities were enhanced and MDA content were decreased in the group supplemented with MitoTEMPO. In conclusion, mitochondria-targeted antioxidant MitoTEMPO improves the post-thaw sperm quality and antioxidant enzymes profile.  相似文献   

7.
Soybean lecithin is a suitable plant-based cryoprotectant for freezing ruminant sperm. Optimum level of lecithin was not clear for goat semen cryopreservation. The objective of this study was to investigate the effects of different levels of soybean lecithin in semen extender on post-thaw sperm quality including CASA-motion parameters, viability, plasma membrane integrity and lipid peroxidation. Semen samples were collected from 4 Mahabadi bucks using an artificial vagina. Different concentrations of soy lecithin (SL, 0.5%, 1%, 1.5%, 2% and 2.5% w/v) were compared to 15% (v/v) egg yolk-based extender (TR-EY). No significant difference was observed for sperm progressive motility, viability or plasma membrane integrity in 1.5% SL media (33.8%, 66%, and 62.7%, respectively) and TR-EY medium (35.4%, 67.2%, and 64.9%, respectively). Sperm motion characteristics (VAP, VSL, VCL, ALH and LIN) and rapid spermatozoa were improved with extender containing 1% and 1.5% SL, compared to TR-EY extender. Furthermore, egg yolk produced significantly higher malondialdehyde (4.02 ± 0.21) than other groups. Results suggest that the optimal lecithin concentration in the semen extender was 1.5% and also soy lecithin can substitute for egg yolk during cryopreservation for caprine sperm.  相似文献   

8.
Three experiments conducted to improve the survival of emu sperm during cryopreservation aimed to: (1) minimize chilling injury during the cooling phase; (2) determine the osmotic effects of dimethylacetamide (DMA), sucrose and trehalose; and (3) investigate the timing and nature of cryoprotectant toxicity. We measured sperm membrane integrity, motility, morphology and egg membrane penetration. In Experiment 1, semen diluted 1:1 with a pre-cooled diluent (5°C) prevented chilling injury. In Experiment 2, semen was diluted with DMA, trehalose or sucrose (300-2400mOsm/L) in deionized water. Only added DMA decreased the percentage of morphologically normal sperm. The percentage of motile sperm was higher with DMA than with the sugars, but membrane intact sperm were comparable amongst all cryoprotectants. As for the osmotic effects, the percentage of membrane intact sperm decreased with 2400mOsm/L and sperm motility decreased with 1200-2400mOsm/L, but sperm morphology was similar at all osmolarities. In Experiment 3, sperm membrane integrity, motility and morphology were comparable at all DMA osmolarities between sperm equilibrated for 0 and 15min, and remained unchanged after removal of DMA. We conclude that: (a) loss of sperm function during the cooling phase can be avoided by using a diluent maintained at 5°C; (b) emu spermatozoa tolerate upto 1400mOsm/L; (c) DMA results in a permanent change in sperm morphology when it is dissolved in deionized water, but does not alter sperm membrane integrity and motility; and (d) equilibration time of sperm with DMA can be less than 10min.  相似文献   

9.
The interest to develop assisted reproductive technologies and cryobanking for farm animal genetic resource conservation has recently increased. However, cryopreservation for ex-situ management of genetic diversity sometimes is not routinely feasible, owing to the lack of facilities (AI centres, laboratories) and expertise near the local breed farming area. In these cases, epididymal sperm obtained from slaughtered or castrated animals, associated with the possibility of managing rather long periods between animal death, sperm recovery and freezing, would increase the opportunities to create semen storages. This investigation addresses the pre-freeze/post-thaw quality of goat epididymal sperm as a function of testicle storage temperature (environment or +5°C) and time elapsed between animal’s death and sperm recovery (0, 24, 48, 72 h) to establish the optimal protocols for the recovery and cryopreservation of epididymal sperm in this species. Testicles of 50 mature bucks collected at the abattoir were divided in two groups: half of the testicles (n=50) were transported to the laboratory at environment temperature (E), whereas the remaining half (n=50) at a refrigeration temperature (R) of +5°C. In the two groups (E) and (R), one testicle from each pair was processed after slaughter forming the time 0 groups (0E and 0R). The contralateral testicle was processed after 24, 48 or 72 h of storage, at the corresponding temperature. Sperm motility and kinetic parameters, viability and morphology were assessed in pre-freeze and post-thaw samples. Until 48 h postmortem, both E and R temperatures are able to maintain good pre-freeze epididymal sperm quality. After 48 h postmortem, R temperature is fundamental to reduce epididymal sperm quality decay in pre-freeze samples. Moreover, testicle refrigeration also has a positive impact on post-thaw samples, allowing a lower decline through time considering total motility, kinetics parameters, sperm viability and sperm abnormalities. Therefore, when sperm cryopreservation is not immediately practicable, goat testicles should be transported and stored at 5°C up to a maximum of 48 h postmortem to ensure an acceptable sperm quality.  相似文献   

10.
The objective of this study was to evaluate the effects of two commercially available semen extenders on the motility of cryopreserved goat sperm and to simplify the cryopreservation protocol. Individual goat ejaculates were split and processed in parallel for freezing in either commercially available soy-based extender (Bioxcell®) or egg yolk-based extender (Irvine TYB). Sperm quality was assessed using total and progressive sperm motility, measured by computer-assisted sperm analysis (CASA). Total motility was higher for samples processed in soy-based extender, both at pre-freeze (P = 0.002) and at post-thaw (P < 0.0001). Progressive motility was higher for semen processed in soy extender at post-thaw (P < 0.0001). Approximately 10% of samples processed in egg yolk-based extender had a large (> 50%) reduction in total motility prior to freezing. However, this type of extreme reduction in pre-freeze motility did not occur in semen samples processed in soy extender. In addition, the use of soy-based extender eliminated the need for a time-consuming sperm washing protocol. We concluded that a commercially available soy-based extender was superior to an egg yolk-based extender in preserving motility of cryopreserved goat sperm, using a two-step method.  相似文献   

11.
Cryopreservation methods for poultry semen are not reliable for germplasm preservation, especially for turkeys, where fertility rates from frozen/thawed semen are particularly low. The objective was to evaluate cryopreservation methods for effectiveness in promoting cryosurvival and post-thaw function of sperm from five turkey lines: one commercial line and four research (RBC1; E; RBC2; F) lines from Ohio State University (OSU). The model for cryopreservation was set up as a 2 × 2 × 2 × 5 design for cryoprotectant (glycerol or dimethylacetamide (DMA)), cryopreservation medium (Lake or ASG), method of dilution (fixed dilution volume versus fixed sperm concentration) and turkey line, respectively. The final cryoprotectant concentrations were 11% glycerol or 6% DMA. Thawed sperm were evaluated for plasma membrane integrity and quality, motility, acrosome integrity and, after artificial insemination, for egg fertility and hatchability. Commercial turkey hens were used for all fertility trials, regardless of semen source. Turkey sperm frozen with glycerol exhibited higher membrane integrity and membrane quality upon thawing than turkey sperm frozen with DMA although no differences in total motility, and only minimal differences in progressive motility, were detected among the eight cryopreservation treatments. Within line, fertility was affected by cryoprotectant, medium and dilution method, where the overall highest percentages of fertile, viable embryos (Day 7) occurred for the DMA/ASG/fixed sperm concentration method, while high percentages (15.8–31.5%) of fertile, non-viable embryos (Day 1–6) were observed for multiple cryopreservation methods, including two glycerol treatments. From a single insemination, the duration of true and viable fertility in all lines was 10–13 weeks and 9–10 weeks, respectively. The duration of hatchability was 4–6 weeks after insemination for four of the turkey lines. The highest percentage of viable embryos was observed for the commercial line (9.5 ± 2.4%), followed by the E line (5.3 ± 1.3%), F line (3.7 ± 2.0%) and RBC2 line (2.6 ± 0.8%). For the RBC1 line, there was 100% embryonic death by Day 6 of incubation. Overall, better fertility results were obtained with the cryoprotectant DMA, the ASG diluent and fixed sperm concentration. However, the applicability of this method for preserving semen from research populations may be line dependent.  相似文献   

12.
The aim of the present study was to compare the effects of two freezing methods, vapor phase and very rapid freezing, with and without cryoprotectant on semen parameters in men with normal semen criteria. Cryopreservation was done on semen samples from 31 men by two methods of vapor phase freezing and very rapid freezing, with and without Test Yolk buffered glycerol (TYBG) as cryoprotectant. The motility, viability, acrosome and DNA integrity were evaluated on fresh and post-thaw samples. Post-thaw sperm progressive motility was significantly higher in the presence of TYBG in the vapor phase cryopreservation (%6.30 ± 3.74) compared with the very rapid freezing method (%2.2 ± 1.97 and %4.00 ± 2.42 in the presence and absence of TYBG, respectively). There was no significant difference in viability, acrosome status and DNA integrity between two methods in presence or absence of TYBG. The very rapid freezing method in the absence of TYBG showed better sperm motility but viability, acrosome and DNA integrity were similar to the presence of TYBG. The results show that cryopreservation of human spermatozoa together with seminal plasma by using vapor phase method is better than very rapid freezing method to preserve sperm progressive motility; however very rapid freezing method is quick and simple and do not require special cryoprotectant. It can be used for cryopreservation of small number of spermatozoa in IVF centers.  相似文献   

13.
Semen cryopreservation is a useful tool for preserving fertility in men who have been diagnosed with cancer and will undergo chemotherapy, radiotherapy or testicular surgery. Semen is also commonly cryopreserved prior to its use in assisted reproductive techniques such as in vitro fertilization and intracytoplasmic sperm injection. The post-thaw quality of banked sperm can vary, which may negatively affect fertilization rates. The objective of our study was to assess the pre-freeze and post-thaw variability of sperm parameters in patients who used our sperm banking services. Multiple samples obtained after a short period of sexual abstinence were examined for variation in sperm characteristics. Semen samples showed a high degree of post-thaw inter-sample variability in sperm motility, motion characteristics, and percentage cryosurvival rate compared with the pre-freeze inter-sample variability. Further research is necessary to understand the mechanism(s) responsible for this variability. This may also assist clinicians utilize semen samples with optimum semen quality in ART procedures.  相似文献   

14.
Sumatran rhinoceros (Dicerorhinus sumatrensis) sperm samples were collected from a post-copulatory female and characterized to determine their potential for sperm preservation and future use in artificial insemination. Five samples of acceptable quality from one male were used to compare the effect of two cryoprotectants (glycerol and dimethyl sulfoxide (DMSO)) and two post-thaw protocols (untreated and glass wool column) on sperm quality. The percentage of motile spermatozoa, sperm motility index (0-100) and sperm morphology were evaluated subjectively, and viability and acrosomal status were assessed using fluorescent markers. Evaluations of frozen-thawed spermatozoa were performed over a 6 h incubation interval. Post-coital semen samples (n = 5; 104.0 +/- 9.1 ml; 2.5 +/- 0.8 x 10(9) total spermatozoa; mean +/- SEM) exhibited a sperm motility index of 56.7 +/- 3.3, and contained 40.2 +/- 6.3%, 72.0 +/- 3.2% and 79.8 +/- 6.5% normal, viable and acrosome-intact spermatozoa, respectively. Glycerol and DMSO were equally effective as cryoprotectants and, regardless of post-thaw protocol, samples retained greater than 80% of all pre-freeze characteristic values. Processing semen samples through glass wool yielded higher quality samples, but only half the total number of motile spermatozoa compared with untreated samples. High values for pre-freeze sperm characteristics were also maintained after cryopreservation of epididymal spermatozoa from one black rhinoceros (Diceros bicornis) using the same protocol. In summary, Sumatran rhinoceros spermatozoa of moderate quality can be collected from post-copulatory females. Rhinoceros sperm samples show only slight reductions in quality after cryopreservation and thawing and have potential for use in artificial insemination.  相似文献   

15.
不同渗透压的稀释液对猕猴精子低温冷冻保存的影响   总被引:3,自引:0,他引:3  
以稀释液TTE(382mOsm/kg)为对照,研究了5种渗透压(688、389、329、166、43mOsm/kg)的TEST稀释液(TEST、mTEST1、mTEST2、mTEST3、mTEST4)在冷冻过程中对猕猴精子功能的影响。精液一步稀释于含甘油的防冻液中,甘油的终浓度为5%(v/v)。在冷冻前后分别检测精子的运动度和质膜完整性,后者用Hoechst33342和碘化丙锭双色标记流式细胞术分析。结果表明:冷冻之前,与鲜精相比,用TEST和mTEST4稀释的精子运动度和质膜完整性显著降低(P<0·001),其余组中除mTEST2稀释的精子质膜完整性显著降低(P<0·05)外,精子运动度无差异;冷冻复苏后,TTE、mTEST3和mTEST1冻存精子的运动度和质膜完整性最高,其次是mTEST2,TEST和mTEST4冷冻效果最差(P<0·05)。提示等渗、适当高渗或低渗的稀释液适合猕猴精子的冷冻保存;对精子产生高渗毒害作用是导致猕猴精子用TEST冷冻存活率低的主要原因。  相似文献   

16.
A number of studies have explored the use of membrane permeable (usually metabolizable) and membrane impermeable saccharides to protect cells in general, and sperm in particular during cryopreservation. Critical concentrations for protective levels of sugars frequently range between 50 mmol/L and 500 mmol/L, where efficacy is attributed to the sugar's membrane stabilizing and glass forming attributes and colligative effects that reduce intra- and extracellular salt concentrations during freezing. Many studies on bull sperm have demonstrated that both permeating and non-permeating sugars have negligible positive effects on post-thaw viability. Recently, however, a non-metabolizable sugar, 3-O-Methylglucose (3-OMG), was shown to protect hepatocytes during liver cryopreservation at 0.1–0.3 mol/L. Because glucose is readily transported into sperm, we hypothesized that 3-OMG could be a new class of cryoprotectant to explore in bull sperm. Here we present positive results demonstrating that 3-OMG improves post thaw viability in bull sperm, and that this effect is not likely due to improved glass forming capabilities. In particular, in experiment 1, 3-OMG was added to the Tris-egg yolk-glycerol base media at levels from 0 mmol/L to 200 mmol/L. Semen from four bulls was collected and diluted with one of the cryopreservation media, cooled, and frozen following industry standard practices. Motility and mitochondrial activity were negatively impacted when concentration of 3-OMG was more than 25 mmol/L. Therefore, we explored lower concentrations in experiment 2, where semen from eight bulls was used to evaluate concentrations 5 mmol/L, 15 mmol/L and 25 mmol/L of 3-OMG compared with control. Motility and progressive motility in 5 mmol/L 3-OMG and in the control were significantly higher than 15 mmol/L and 25 mmol/L 3-OMG, whereas mitochondrial activity and acrosome integrity in 5 mmol/L 3-OMG were significantly better than the control freezing medium. In experiment 3, to evaluate whether the improved effects of 3-OMG are due to its non-metabolizing property, or due to colligative effects, we compared post-thaw viability in semen from four bulls cryopreserved with 5 mmol/L glucose, sucrose, or 3-OMG. Motility and progressive motility was significantly improved in 3-OMG compared to glucose or sucrose groups which were comparable to the EY control. In conclusion, 3-OMG at a concentration of 5 mmol/L in Tris-egg yolk-glycerol medium improves the post thaw motility, progressive motility and viability of bull sperm. The mechanism of action is not understood but because the efficacy is maximal at low concentrations, it is not likely due to improved intra- or extracellular glass forming abilities and may demonstrate a different protective mechanism than was shown in hepatocytes.  相似文献   

17.
Sperm cryopreservation is a tool for the conservation of the genetic material of animals of genetic importance or for species preservation. In the case of domestic cats, this can be used to generate information about seminal harvest, evaluation and preservation, which is especially important due to its applicability to wild felids. This study evaluated seminal samples harvested by urethral catheterisation from 13 adult domestic cats. Samples were cryopreserved with experimental groups of extenders were defined by the penetrating cryoprotectant: 6% glycerol (GLY6%), 3% dimethylacetamide (DMA3%) and 3% dimethylformamide (DMF3%). The samples were thawed and evaluated by conventional microscopy and by computer-assisted sperm analysis (CASA). The structural and functional membrane integrity was assessed by supravital tests (EOS), hypoosmotic swelling tests (HOST) and flow cytometry (FC). There was a correlation (P < 0.05) between total motility and EOS (r = 0.54), HOST and FC (r = −0.62) and total motility and flow cytometry (r = 0.63), indicating that these are complementary parameters that increase the accuracy of the feline sperm quality evaluation post-thaw. The results regarding the structural and functional integrity of the sperm plasma membrane did not differ (P > 0.05) among groups. However, the DMA3% group had a lower (P < 0.05) percentage of morphological changes in the sperm tail compared to samples cryopreserved with GLY6% and DMF3%. Additionally, DMA3% provided lower values of immobile sperm post-thaw when compared to DMF3%. DMA is an interesting alternative to GLY and superior to DMF for the cryopreservation of feline semen at the studied concentrations.  相似文献   

18.
This study was designed to identify the best pellet cryopreservation procedure for the cryosurvival of turkey semen among 192 different treatments established by variations and permutations of seven conditions used in the freezing/thawing process. These conditions were: diluent (IGGKPh, SPh or Tselutin); dilution rate (1:3 vs. 1:4); cooling time (45 vs. 60 min); dimethylacetamide (DMA) concentration as cryoprotectant (6 vs. 8%); equilibration time in DMA (1 vs. 5 min); semen drop volume (50 vs. 80 μL) and thawing temperature (60 vs. 75 °C). Through principal components analysis (PCA), post-thaw sperm quality data (mobility, viability and membrane functional integrity) were reduced to a single output variable (Sperm Quality) indicating overall post-thaw semen quality. All treatments induced a significant reduction in semen quality after warming (P < 0.01), though one set of seven conditions, or treatment, was identified by PCA to generate the highest Sperm Quality score and a further five treatments yielded a score not significantly different (P > 0.05) from this best score. Although still not fulfilling the requirements for commercial application, our findings serve to identify the critical steps in turkey sperm cryopreservation that need to be assessed in future studies.  相似文献   

19.
The objective was to evaluate the effects of various antioxidants and duration of pre-freezing equilibration on cryopreservation of ram semen. Semen samples from four rams were pooled, diluted with Tris-egg yolk extender without antioxidants (control), or supplemented with reduced glutathione (GSH: 0.5, 1.0, and 2.0 mM), superoxide dismutase (SOD: 5, 10, and 20 U/mL), or catalase (CAT: 5, 10, and 20 U/mL), and cryopreserved, immediately after thermal equilibrium was reached at 5 °C (0 h), or 12 or 24 h after equilibration. Total antioxidant capacity was determined in the in natura extenders and after addition of semen samples for various durations of processing (fresh/dilute, throughout refrigeration, and post-thaw). Plasma membrane (PI-CFDA), acrosome integrity (FITC-PNA), and mitochondrial membrane potential (JC-1) were determined in fresh/diluted, refrigerated, and post-thaw samples. Post-thaw sperm motility was assessed with a computerized analysis system (CASA). There were no significant differences in acrosome damage or mitochondrial membrane potential after refrigeration and freeze-thaw, regardless of antioxidant addition. Sperm plasma membrane integrity was worse (P < 0.05) with cryopreservation immediately after equilibration (average 20.1 ± 8.3; mean ± SD) than after 12 h of equilibration (average 42.5 ± 10.9); however, the addition of SOD and CAT (10 and 20 U/mL) resulted in no significant difference between post-equilibration intervals of 0 and 12 h. Total antioxidant activity was not different (P > 0.05) among treatments after sperm addition or throughout the refrigeration and post-thaw. In conclusion, adding GSH, SOD or CAT did not increase the total antioxidant capacity of semen, nor did it enhance the quality of the post-thaw sperm. However, maintenance of ram semen at 5 °C for 12 h prior to cryopreservation reduced membrane damage of frozen-thawed sperm.  相似文献   

20.
This study was designed to identify a suitable freezing protocol for rabbit semen by comparing the effects of different concentrations and equilibration times of dimethylacetamide (DMA) and dimethylsulfoxide (DMSO) on the postthaw quality of the semen. After establishing the best protocols for each cryoprotectant, their efficacy was compared by examining the in vivo fertilizing capacity of the semen samples. Pooled semen samples diluted in freezing medium containing 4%, 6%, or 8% DMA or DMSO (all combined with 1% sucrose as a nonpermeating cryoprotectant) were loaded in straws and equilibrated for 5, 15, or 45 min before freezing in liquid nitrogen vapor. The variables assessed after thawing were sperm motility, viability, osmotic resistance, and acrosome and DNA integrity. Marked effects on these variables were shown by the cryoprotectant concentration and equilibration time, with best results obtained using DMA 6% or DMSO 8% and equilibration times of 45 min. These freezing protocols were selected to compare the two cryoprotectants in an insemination trial. Three groups of 114 rabbit does (28 nulliparous and 86 multiparous in each group) were inseminated with fresh semen or with semen frozen using the optimized DMA or DMSO protocols. Fertility rates and numbers of kids born were similar, respectively for the DMSO-frozen (79.8% and 7.7 ± 0.3 young per kindling) and fresh semen (81.6% and 8.6 ± 0.3) yet higher (P ≤ 0.05) than the rates returned using the DMA-frozen semen (47.4% and 6.7 ± 0.4). Moreover, the numbers of rabbits born alive when DMSO was used in the freezing protocol, despite being lower than those recorded using fresh semen, were higher than when DMA was used as the cryoprotectant (P < 0.05). The physiological status of the does (nulliparous or multiparous) had no influence on the fertility and prolificacy results. Our findings indicate that the cryosurvival of rabbit sperm frozen using DMSO or DMA as the cryoprotectant is highly influenced by the concentration of cryoprotectant used and the time the semen is exposed to the agent before freezing. According to our in vivo fertility and prolificacy data, DMSO emerged as more effective than DMA for the cryopreservation of rabbit sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号