首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth induction in resting fibroblast cultures by serum or growth factors induces a fast, transient cGMP peak which may constitute the intracellular signal for growth. A similar cGMP peak occurs when 3T3 cells arrested at the restriction point or in G0 by starvation for certain amino acids are induced for growth by readdition of the lacking nutrients. Both 3T3 and SV3T3 cells which are arrested randomly all around the cell cycle do not exhibit major changes in cyclic nucleotides after growth induction. Determination of intracellular cAMP and cGMP levels in normal and transformed fibroblasts under different growth conditions shows that the transition between growing and resting state (G0 arrest) is accompanied and probably induced by characteristic changes in cAMP to cGMP ratios. cGMP is decreased 2-5-fold in resting as compared to growing cultures, and increased 10-20-fold in activated cultures 20 min after serum induction. No major cGMP change was observed in growing, confluent, or serum-activated cultures of transformed cells. Measurement of guanylcyclase under unphysiological conditions (2 mM Mn++) in crude and purified membranes from 3T3 and SV3T3 cultures did not show increased enzyme activity in the transformed cells. Significant differences may only show up when synchronized cells pass through the restriction point in G1 phase. As a hypothesis it is proposed that transformed cells have an activated guanylcyclase system or a relaxed cGMP-pleiotypic response mechanism at the restriction point of their cell cycle.  相似文献   

2.
Cyclic AMP, calcium and control of cell growth   总被引:1,自引:0,他引:1  
R K Ralph 《FEBS letters》1983,161(1):1-8
The role of cyclic AMP and calcium in the control of normal and tumour cell growth is considered in relation to the question whether cyclic AMP is a true mitogen or co-mitogen. It is proposed that cyclic AMP normally controls the cell cycle at a point in G1 phase only by virtue of its ability to exclude calcium required by cells to progress past this point into S phase. Therefore increased influx of calcium by other routes induced by various factors can bypass the inhibitory effect of cyclic AMP and stimulate growth. In these circumstances cyclic AMP or calcium may or may not facilitate further progress into S phase according to the metabolic requirements of individual cells. The relevance to cancer cells is considered.  相似文献   

3.
Intracellular concentrations of cyclic adenosine 3'-5' monophosphate (cAMP) and cyclic guanosine 3'-5' monophosphate (cGMP) were measured in human lymphocytes induced to divide by the addition of lectins, 12-O-tetra-decanoylphorbol-13-acetate (TPA) and the calcium ionophore A 23187. cGMP levels rose within minutes without concomitant alterations in cAMP concentration. The cAMP and cGMP levels rose during the prereplicative and replicative phases respectively. Under calcium depleting conditions, both the fluctuations in cyclic nucleotide levels and the increase in [3H[ thymidine incorporation into DNA were abolished, suggesting a role for calcium ions in the regulation of lymphocyte proliferation.  相似文献   

4.
5.
6.
Tumor-stroma interactions: their role in the control of tumor cell invasion   总被引:7,自引:0,他引:7  
Zigrino P  Löffek S  Mauch C 《Biochimie》2005,87(3-4):321-328
The development and progression of tumors result from the concerted activity not only of tumor cells with neighboring cells e.g., fibroblasts and inflammatory cells. Host-tumor interactions are considered critical in tumor invasion and metastasis. In vitro studies as well as established in vivo models have analysed the reciprocal effects of tumor-host interactions for the tumor invasion process. These studies have shown that modifications in the extracellular matrix composition surrounding the tumors as well as alterations in the expression of tumor cell receptors or in the expression of growth factors/cytokines and proteases, are critical regulators of a developing tumor. We shortly review the most important and well characterized mechanisms involved in the progression of tumor cells through tissues, especially those participating in cellular communication, cell adhesion, and proteolysis.  相似文献   

7.
8.
Significant advances in understanding plant cyclic nucleotide signalling have been made in the past two years. The roles of these molecules in the regulation of ionic channels, defence responses and the apical growth of cells are being uncovered.  相似文献   

9.
It was shown that B lymphocyte motility activated by anti-immunoglobulin serum may be abrogated in a Na+-deficient medium and in a 10(-5)M trifluoperazine-containing medium but not in a Ca2+-deficient medium. The tetracycline fluorescence test demonstrated Ca2+ efflux from isolated B lymphocyte mitochondria due to Na+ exposure. The radioimmunoassay demonstrated the cGMP level to rise after exposure to anti-immunoglobulin serum. The Na+-dependent Ca2+ efflux from the mitochondria might be the main mechanism in anti-immunoglobulin serum activation of B lymphocytes and in the cGMP level rising.  相似文献   

10.
11.
Accumulating findings indicate that nucleotides play an important role in cell-to-cell communication through P2 purinoceptors, even though ATP is recognized primarily to be a source of free energy and nucleotides are key molecules in cells. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (7 types; P2X(1)-P2X(7)) contain intrinsic pores that open by binding with ATP. P2Y (8 types; P2Y(1, 2, 4, 6, 11, 12, 13,) and (14)) are activated by nucleotides and couple to intracellular second-messenger systems through heteromeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. One of the most exciting cells in non-excitable cells is the glia cells, which are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of P2 purinoceptors and release the 'gliotransmitter' ATP to communicate with neurons, microglia and the vascular walls of capillaries. Microglia also express many types of P2 purinoceptors and are known as resident macrophages in the CNS. ATP and other nucleotides work as 'warning molecules' especially through activating microglia in pathophysiological conditions. Microglia play a key role in neuropathic pain and show phagocytosis through nucleotide-evoked activation of P2X(4) and P2Y(6) receptors, respectively. Such strong molecular, cellular and system-level evidence for extracellular nucleotide signaling places nucleotides in the central stage of cell communications in glia/CNS.  相似文献   

12.
Summary Lateral (L) cilia ofMytilus gill are activated by serotonin which, in molluscan systems, is known to activate adenylate cyclase. Triton-extracted models of L-cells, arrested at >10–6 M Ca++, are stimulated to beat by the addition of 10–5 M cAMP while still under Ca++ arrest conditions, suggesting that cAMP-activation is not mediated by alterations of Ca++ levels. Using isolated, permeabilized cilia, we find, independent of [Ca++], that cAMP-dependent protein phosphorylation in L-cilia occurs uniquely and reversibly on three low molecular weight polypeptides of 23,000, 18,000, and 14,000 daltons. Phosphorylation is maximal at cAMP concentrations above 0.5 M. The phosphorylated chains partially coextract at high salt with a 14S dynein fraction and have approximately the same molecular weights as reported for dynein light chains. Such conditions mainly extract the outer dynein arm, about 40% of the Mg++-ATPase activity, and a corresponding amount of the cAMP phosphorylated chains. However, the three polypeptides sediment together at 10–11S, clearly separable from the 14S dynein ATPase. Using a gel-overlay technique, we find that calmodulin binds to axonemal polypeptides of L-cilia with molecular weights of 18,000 and 13,000, independent of Ca++, while in mixed-population cilia, only a 12,000 dalton chain binds calmodulin, in a Ca++ dependent manner. In neither case are calmodulin binding proteins found in the high salt fraction containing the cAMP-dependent phosphorylated chains, indicating that, in spite of some similarity in molecular weight, the cAMP-phosphorylated and calmodulin binding polypeptides are different. Also, double-labeling indicates that only the 18,000 dalton chains co-migrate. These data suggest that serotonin may activate lateral cilia through a cAMP-dependent phosphorylation of a dynein-associated regulatory protein complex, while Ca++ may inhibit ciliary movement, independently, by binding to calmodulin associated with a different class of regulatory protein.  相似文献   

13.
A short review of the role of cyclic nucleotides and prostaglandins (PGs) in normal and pathological functions of the heart is given. Possible interrelationships of these two regulatory systems have been studied by using spontaneously beating rat atria preparations. Addition of noradrenaline (NA) to the incubate (1 . 10(-6) M) caused an increase in amplitude and frequency which was preceded and parallelled by an elevation of the tissue cAMP level. A transient increase in cGMP and PGE values was also seen. Propranolol (5 . 10(-6) M) abolished the increase in amplitude and frequency as well as in cAMP and PGE concentrations. Indomethacin (1 . 10(-5) M) inhibited the formation of PGE. The increase in cGMP was blocked by phenoxybenzamine. Interchange between beta- and alpha-receptors according as the temperature is lowered has been described earlier. Hypothermia (20 degrees C) had a positive inotropic effect on the atria and increased the tissue cAMP concentration. Loading of the atria caused an increase in cAMP without any effects on cGMP or PGs. Slight hypoxia did not change the cAMP or PG levels, but elevated the cGMP values. Arrhythmias induced by hypo- or hyperpotassemia did not modify the biochemical parameters measured. PGF2alpha (1. 10(-5) M) normalized the atrial rhythm and increased the amplitude without changing cyclic nucleotide or PG levels. PGE1 (1 . 10(-4) M) increased the amplitude of normorhythmic atria and the tissue concentration of cAMP. PGE2 was the only PG tested which stimulated the heart adenylate cyclase in vitro. There seems to be close but complicated relationships between cyclic nucleotides and PGs in the heart.  相似文献   

14.
Conclusion Calcium, cyclic AMP, and cyclic GMP do not seem to be involved in proliferative activation of postmitotic differentiated cells. Instead, they are intracycle regulators, and we propose the following working model of their control of the initiation of DNA synthesis. While a role for cyclic GMP cannot yet be defined, a brief postmitotic burst of its synthesis might serve to prevent certain activated cells (e.g. 3T3 mouse cells) from being diverted into a nonproliferating (but still activated) G0 state (Figs. 1 and 17). In a latter part of the G1 phase, something happens to stimulate briefly the synthesis of cyclic AMP which, in turn, drives calcium ions from the mitochondria into the cytosol to activate newly synthesized thymidylate synthetase (or other primed enzymic assemblies) (Fig. 1). Having “turned on” their target enzymes, the accumulated cyclic AMP is destroyed and the excess calcium ions are reaccumulated by the mitochondria to avoid interfering with succeeding reactions. This model predicts that persistent changes in cyclic AMP metabolism and the respiration-linked, calcium-accumulating (ion-buffering) activity of mitochondria may be responsible for the sustained growth of tumors. Issued as NRCC No. 14974.  相似文献   

15.
The objective was to describe the changes in catecholamine levels, noradrenaline (NA) release and the ultrastructural and immunohistochemical changes in the sympathetic nerves in the penis of STZ-diabetic rats. Amines were measured using HPLC. Nerves were studied using immunocytochemistry for tyrosine hydroxylase, and electron microscopy. Diabetic animals were compared with age-matched controls. The concentration of penile NA increases at least 2.5-fold after about 10 weeks of hyperglycaemia, is maintained for over 40 weeks. The rate of release of NA in the diabetics also increases approximately by fourfold. Immunohistochemical staining for tyrosine hydroxylase showed either no change or an increase in the levels of the enzyme around the central arteries and the outer coverings of the corpus cavernosum. Cavernosal nerves show increased intensity of staining for tyrosine hydroxylase, and the presence of dilated nerve fibres and engorged endings. The axons of the dorsal nerve of the diabetic penis have a smaller cross-sectional area that is most marked in unmyelinated axons. In the diabetic penis, the nerve endings appear to contain significantly more NA than the controls, and the turnover of noradrenaline is increased substantially. There is immunocytochemical evidence of an increase in staining for tyrosine hydroxylase, suggesting an increase in synthetic activity. These results are discussed in relation to the existing literature on the role of amines in normal and disordered erectile function. In particular, the increased concentration and turnover of NA in the diabetic rat contrasts with the fall in NA in cavernosal blood described during normal erection in humans. This work is supported by grants from FMHS, and the Sheikh Hamdan Awards for Medical Research.  相似文献   

16.
Trophoblasts are specialized epithelial cells of the placenta that are involved in invasion, communication and the exchange of materials between the mother and fetus. Cytoplasmic Ca2+ ([Ca2+]c) plays critical roles in regulating such processes in other cell types, but relatively little is known about the mechanisms that control this second messenger in trophoblasts. In the current study, the presence of RyRs and their accessory proteins in placental tissues and in the BeWo choriocarcinoma, a model trophoblast cell-line, were examined using immunohistochemistry and Western immunoblotting. Contributions of RyRs to Ca2+ signalling and to random migration in BeWo cells were investigated using fura-2 fluorescent and brightfield videomicroscopy. The effect of RyR inhibition on reorganization of the F-actin cytoskeleton elicited by the hormone angiotensin II, was determined using phalloidin-labelling and confocal microscopy. RyR1 and RyR3 proteins were detected in trophoblasts of human first trimester and term placental villi, along with the accessory proteins triadin and calsequestrin. Similarly, RyR1, RyR3, triadin and calsequestrin were detected in BeWo cells. In this cell-line, activation of RyRs with micromolar ryanodine increased [Ca2+]c, whereas pharmacological inhibition of these channels reduced Ca2+ transients elicited by the peptide hormones angiotensin II, arginine vasopressin and endothelin 1. Angiotensin II increased the velocity, total distance and Euclidean distance of random migration by BeWo cells and these effects were significantly reduced by tetracaine and by inhibitory concentrations of ryanodine. RyRs contribute to reorganization of the F-actin cytoskeleton elicited by angiotensin II, since inhibition of these channels restores the parallelness of these structures to control levels. These findings demonstrate that trophoblasts contain a suite of proteins similar to those in other cell types possessing highly developed Ca2+ signal transduction systems, such as skeletal muscle. They also indicate that these channels regulate the migration of trophoblast cells, a process that plays a key role in development of the placenta.  相似文献   

17.
18.
Notch is a transmembrane receptor that mediates local cell-cell communication and coordinates a signaling cascade present in all animal species studied to date. Notch signaling is used widely to determine cell fates and to regulate pattern formation; its dysfunction results in a tremendous variety of developmental defects and adult pathologies. This primer describes the mechanism of Notch signal transduction and how it is used to control the formation of biological patterns.  相似文献   

19.
The time courses of changes in cyclic nucleotide levels in monocytes have been studied. Histamine and prostaglandin E2 (PGE2) produced a rapid rise in cyclic AMP (peak 15 min) levels, which returned to normal within 4h, whereas cholera toxin, NaF and phosphodiesterase inhibitors produced slow sustained rises lasting over 24h. With the exception of isobutylmethylxanthine (10 mumol X 1(-1), none of these reagents altered cyclic GMP levels. alpha 1-Adrenergic and nicotinic cholinergic receptor-ligand interactions and imidazole produced rapid and relatively short-lived falls in cyclic AMP, and rises in cyclic GMP. In contrast, prostaglandin synthetase inhibitors produced delayed but more sustained falls in cyclic AMP but no rises in cyclic GMP. Agents that increased cyclic AMP decreased complement-component-C2 production, and those that decreased cyclic AMP increased C2 production. Agents that increased cyclic GMP alone (ascorbate, nitroprusside and prostaglandin F2 alpha) did not affect C2 production. Antigen-antibody complexes that stimulate C2 synthesis produced falls in cyclic AMP and rises in cyclic GMP similar to those produced by adrenergic and cholinergic ligands. Serum-treated complexes and anaphylatoxins, which inhibited C2 production, were associated with changes in cyclic AMP similar to those produced by histamine and PGE2. These data suggest that there are two transmembrane signals involved in the regulation of C2 production by monocytes. The inhibitory signal is adenylyl cyclase activation. The stimulatory signal is not so obvious, but may be Ca2+ influx, since the time courses of changes in cyclic nucleotides produced by agents that stimulate C2 synthesis are identical, and alpha 1-adrenergic agonists cause the formation of Ca2+ channels.  相似文献   

20.
The dynamics of cAMP and cGMP content of the thymus homogenate from developing chick embryos and chickens was studied during ante- and postnatal development. Changes in the content of cyclic nucleotides bear an oscillatory pattern. At the early stages of embryogenesis (9 to 11 days of incubation) the content of cyclic nucleotides was low and gradually increased by 13 days of incubation. As the development proceeded, the quantitative and qualitative rearrangement of the thymus cellular composition reflected in changes in the content of cyclic nucleotides. At the same time the curves of cyclic nucleotide content became antiphasic. These reciprocal cAMP to cGMP ratios might reflect the cyclic and synchronous reproduction and functional development of the main bulk of the thymus cellular elements. The maximum content of cAMP and the minimum content of cGMP were recorded on the 17th day of embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号