首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregated alpha-synuclein is the main component of Lewy bodies, intraneuronal deposits observed in Parkinson’s disease and dementia with Lewy bodies. The objective of the study was to identify surface-exposed epitopes of alpha-synuclein in vitro and in vivo formed aggregates. Polyclonal immunoglobulin Y antibodies were raised against short linear peptides of the alpha-synuclein molecule. An epitope in the N-terminal region (1–10) and all C-terminal epitopes (90–140) were found to be exposed in an indirect enzyme-linked immunosorbent assay (ELISA) using recombinant monomeric, oligomeric, and fibrillar alpha-synuclein. In a phospholipid ELISA, the N-terminus and mid-region of alpha-synuclein (i.e., 1–90) were associated with phosphatidylserine and thus occluded from antibody binding. The antibodies that reacted most strongly with epitopes in the in vitro aggregates (i.e., 1–10 and epitopes between positions 90–140) also labeled alpha-synuclein inclusions in brains from transgenic (Thy-1)-h[A30P] alpha-synuclein mice and Lewy bodies and Lewy neurites in brains of patients with alpha-synucleinopathies. However, differences in reactivity were observed with the C-terminal antibodies when brain tissue from human and transgenic mice was compared. Taken together, the study shows that although similar epitopes are exposed in both in vitro and in vivo formed alpha-synuclein inclusions, structural heterogeneity can be observed between different molecular species.  相似文献   

2.
Plant phenotype stability during ex vitro growth, one of the main requirements of plant micropropagation, was tested on tobacco. Plants cultivated in vitro in the presence of 3 % sucrose under photon flux density (PFD) of 200 mol m–2 s–1 (3 % HL plants) showed the best growth and photosynthetic parameters in the course of 7-day acclimation. However, significant change in phenotype of these plants appeared under a decrease in PFD to 50 mol m–2 s–1 during further ex vitro growth (in the period of 7th – 17th day). Much higher internodia elongation was found in 3 % HL plants in comparison with plants grown in vitro on sucrose media under PFD of 50 mol m–2 s–1 (3 % LL) or without sucrose either under PFD of 50 mol m–2 s–1 or 200 mol m–2 s–1 (0 % LL, 0 % HL). It can be presumed that 3 % HL plants show permanent demand for high PFD. Neither ABA or chlorophyll contents nor de novo thylakoid membrane synthesis were related to the morphogenic effect of low PFD. Changeable contents of hexoses in leaves of 3 % HL and 3 % LL plants were in no direct correlation to the elongated growth.  相似文献   

3.
Dynamin exhibits a high basal rate of GTP hydrolysis that is enhanced by self-assembly on a lipid template. Dynamin''s GTPase effector domain (GED) is required for this stimulation, though its mechanism of action is poorly understood. Recent structural work has suggested that GED may physically dock with the GTPase domain to exert its stimulatory effects. To examine how these interactions activate dynamin, we engineered a minimal GTPase-GED fusion protein (GG) that reconstitutes dynamin''s basal GTPase activity and utilized it to define the structural framework that mediates GED''s association with the GTPase domain. Chemical cross-linking of GG and mutagenesis of full-length dynamin establishes that the GTPase-GED interface is comprised of the N- and C-terminal helices of the GTPase domain and the C-terminus of GED. We further show that this interface is essential for structural stability in full-length dynamin. Finally, we identify mutations in this interface that disrupt assembly-stimulated GTP hydrolysis and dynamin-catalyzed membrane fission in vitro and impair the late stages of clathrin-mediated endocytosis in vivo. These data suggest that the components of the GTPase-GED interface act as an intramolecular signaling module, which we term the bundle signaling element, that can modulate dynamin function in vitro and in vivo.  相似文献   

4.
5.

Background

Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS) under the murine Thy1 (mThy1) promoter, a model known to have a particularly high tg expression associated with impaired olfaction.

Results

Survival of newly generated neurons (NeuN-positive) in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF) promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.

Conclusions

The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.  相似文献   

6.
The effect of glucose concentration on the in vitro release of histamine (HA) was examined, using two different preparations of the mouse hypothalamus. The HA and tele-methylhistamine released from whole blocks of the hypothalamus into the medium linearly increased during 2-h incubation in normal Krebs-Ringer bicarbonate solution in the absence of external depolarizing stimuli. The release of HA from this preparation depended on the temperature and Ca2+ in the medium and was progressively increased with decrease in the glucose concentration from 11.5 to 1 mM. The rate of the HA release was dependent on the absolute concentration of glucose and not on an abrupt change in the concentration. When slices of the hypothalamus were incubated in high K+ medium, a temperature- and Ca2+-dependent HA release was observed. At low concentrations of glucose, the K+ (20 mM)-induced HA release from the hypothalamic slices was also enhanced. Tetrodotoxin (10 microM) inhibited the enhancing effect of a low glucose concentration (2 mM) on the HA release by 60%, in both preparations of the hypothalamus. The possibility that the release of HA from the mouse hypothalamus is regulated by glucose concentration and that activation of neuronal Na+ channels is involved in the enhancement of the HA release by low glucose concentrations warrants further attention.  相似文献   

7.
Alpha-synuclein (aSyn) is the main component of proteinaceous inclusions known as Lewy bodies (LBs), the typical pathological hallmark of Parkinson''s disease (PD) and other synucleinopathies. Although aSyn is phosphorylated at low levels under physiological conditions, it is estimated that ∼90% of aSyn in LBs is phosphorylated at S129 (pS129). Nevertheless, the significance of pS129 in the biology of aSyn and in PD pathogenesis is still controversial. Here, we harnessed the power of budding yeast in order to assess the implications of phosphorylation on aSyn cytotoxicity, aggregation and sub-cellular distribution. We found that aSyn is phosphorylated on S129 by endogenous kinases. Interestingly, phosphorylation reduced aSyn toxicity and the percentage of cells with cytosolic inclusions, in comparison to cells expressing mutant forms of aSyn (S129A or S129G) that mimic the unphosphorylated form of aSyn. Using high-resolution 4D imaging and fluorescence recovery after photobleaching (FRAP) in live cells, we compared the dynamics of WT and S129A mutant aSyn. While WT aSyn inclusions were very homogeneous, inclusions formed by S129A aSyn were larger and showed FRAP heterogeneity. Upon blockade of aSyn expression, cells were able to clear the inclusions formed by WT aSyn. However, this process was much slower for the inclusions formed by S129A aSyn. Interestingly, whereas the accumulation of WT aSyn led to a marked induction of autophagy, cells expressing the S129A mutant failed to activate this protein quality control pathway. The finding that the phosphorylation state of aSyn on S129 can alter the ability of cells to clear aSyn inclusions provides important insight into the role that this posttranslational modification may have in the pathogenesis of PD and other synucleinopathies, opening novel avenues for investigating the molecular basis of these disorders and for the development of therapeutic strategies.  相似文献   

8.

Background

Multinucleated giant cells (MGC) are the histologic hallmark of granuloma which is known to limit tuberculosis infection. Both Th1 and Th2 type of cytokines regulate the immune response occurring within the granulomas. The objective of the study was to determine whether tuberculosis patient monocytes differed in their MGC forming ability as compared to healthy controls.

Methods

In vitro MGC formation was carried out by treatment of monocytes with cytokine containing culture supernatant of ConA or PPD stimulated peripheral mononuclear cells. IL-2, TNF-α, IL-4, IL-10 and TGF-β cytokine levels were analysed in culture supernatants using ELISA. IL-4 and IL-10 were added to culture supernatant separately and simultaneously along with their respective neutralizing antibodies and their consequent effect on MGC formation was evaluated.

Results

MGC formation was significantly low in patient monocytes incubated with autologous culture supernatant as compared to control culture supernatant. Cytokine analysis of the culture supernatants revealed that while IL-4 levels were similar in patients and controls, increased IL-10 levels were found in patients. Exogenous addition of IL-10 resulted in reduced MGC formation. Contrastingly, when IL-4 was added exogenously, it led to increased MGC formation. The effects of both IL-10 and IL-4 were reversed upon addition of their respective antibodies.

Conclusion

The findings suggest that one of the factors contributing to the disease could be the effect of cytokines on the functionality of monocytes, which are crucial in the fight against the organism. Significantly reduced MGC formation was observed on addition of IL-10. The findings imply an overriding role of IL-10 in MGC formation. The suppressive effect of IL-10 on MGC formation was further confirmed by addition of IL-10 neutralizing antibody.  相似文献   

9.
Insulin is critical for controlling energy functions including glucose and lipid metabolism. Insulin resistance seems to interact with hepatitis C promoting fibrosis progression and impairing sustained virological response to peginterferon and ribavirin. The main aim was to elucidate the direct effect of hepatitis C virus (HCV) infection on insulin signaling both in vitro analyzing gene expression and protein abundance. Huh7.5 cells and JFH-1 viral particles were used for in vitro studies. Experiments were conducted by triplicate in control cells and infected cells. Genes and proteins involved in insulin signaling pathway were modified by HCV infection. Moreover, metformin treatment increased gene expression of PI3K, IRS1, MAP3K, AKT and PTEN more than >1.5 fold. PTP1B, encoding a tyrosin phosphatase, was found highly induced (>3 fold) in infected cells treated with metformin. However, PTP1B protein expression was reduced in metformin treated cells after JFH1 infection. Other proteins related to insulin pathway like Akt, PTEN and phosphorylated MTOR were also found down-regulated. Viral replication was inhibited in vitro by metformin. A strong effect of HCV infection on insulin pathway-related gene and protein expression was found in vitro. These results could lead to the identification of new therapeutic targets in HCV infection and its co-morbidities.  相似文献   

10.
11.
The amidification of sphingosine by acyl donors has been investigated in a microsomal fraction prepared from sciatic nerves of normal and Trembler mice. In the control, a ceramide synthesis is observed in the presence of acyl-CoAs and not with free fatty acids. The synthesis increases as a function of the protein amount and the time and is dependent on acyl-CoA concentration. The level of synthesis is highly similar to that observed in vivo after palmitate injection into the sciatic nerves of normal mice. In the mutant, there is a major abnormality because a weak synthesis (20% of the control) is observed only with high acyl-CoA concentration (greater than 200 microM), whereas in the range of the physiological acyl-CoA concentrations (less than 20 microM), there is no ceramide formation from stearoyl-CoA or lignoceroyl-CoA.  相似文献   

12.
13.
14.
Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.  相似文献   

15.
Prions are the proteinaceous infectious agents responsible for Transmissible Spongiform Encephalopathies. Compelling evidence supports the hypothesis that prions are composed exclusively of a misfolded version of the prion protein (PrPSc) that replicates in the body in the absence of nucleic acids by inducing the misfolding of the cellular prion protein (PrPC). The most common form of human prion disease is sporadic, which appears to have its origin in a low frequency event of spontaneous misfolding to generate the first PrPSc particle that then propagates as in the infectious form of the disease. The main goal of this study was to mimic an early event in the etiology of sporadic disease by attempting de novo generation of infectious PrPSc in vitro. For this purpose we analyzed in detail the possibility of spontaneous generation of PrPSc by the protein misfolding cyclic amplification (PMCA) procedure. Under standard PMCA conditions, and taking precautions to avoid cross-contamination, de novo generation of PrPSc was never observed, supporting the use of the technology for diagnostic applications. However, we report that PMCA can be modified to generate PrPSc in the absence of pre-existing PrPSc in different animal species at a low and variable rate. De novo generated PrPSc was infectious when inoculated into wild type hamsters, producing a new disease phenotype with unique clinical, neuropathological and biochemical features. Our results represent additional evidence in support of the prion hypothesis and provide a simple model to study the mechanism of sporadic prion disease. The findings also suggest that prion diversity is not restricted to those currently known, and that likely new forms of infectious protein foldings may be produced, resulting in novel disease phenotypes.  相似文献   

16.
Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR1 and 5-HTR2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR3, 5-HTR4 and 5-HTR7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders.  相似文献   

17.
The choroidal circulation plays a central role in maintaining the health of outer retina and photoreceptor function. Alterations in this circulation contribute to pathogenesis of many eye diseases including exudative age-related macular degeneration. Unfortunately, very little is known about the choroidal circulation and its molecular and cellular regulation. This has been further hampered by the lack of methods for routine culturing of choroidal endothelial cells (ChEC), especially from wild type and transgenic mice. Here we describe a method for isolation and culturing of mouse ChEC. We show that expression of thrombospondin-1 (TSP1), an endogenous inhibitor of angiogenesis and inflammation, has a significant impact on phenotype of ChEC. ChEC from TSP1-deficient (TSP1−/−) mice were less proliferative and more apoptotic, less migratory and less adherent, and failed to undergo capillary morphogenesis in Matrigel. However, re-expression of TSP1 was sufficient to restore TSP1−/− ChEC migration and capillary morphogenesis. TSP1−/− ChEC expressed increased levels of TSP2, phosphorylated endothelial nitric oxide synthase (NOS) and inducible NOS (iNOS), a marker of inflammation, which was associated with significantly higher level of NO and oxidative stress in these cells. Wild type and TSP1−/− ChEC produced similar levels of VEGF, although TSP1−/− ChEC exhibited increased levels of VEGF-R1 and pSTAT3. Other signaling pathways including Src, Akt, and MAPKs were not dramatically affected by the lack of TSP1. Together our results demonstrate an important autocrine role for TSP1 in regulation of ChEC phenotype.  相似文献   

18.
19.
Abstract: β-Amyloid protein has been implicated as a potential causative agent in the neuropathology associated with Alzheimer's disease. This possibility is supported by observations that β-amyloid induces neuronal degeneration and astrocyte reactivity in vitro by as yet undefined mechanism(s). In this report, we present data demonstrating that the pathological effects of β-amyloid on cultured cells are modulated by activation of the thrombin receptor. At concentrations between 50 and 500 n M , thrombin pretreatment significantly attenuates neurotoxicity mediated by fibrillar aggregates of β1–42 and β25–35 peptides. In cultured astrocytes, the stellate morphology induced by β1–42 and β25–35 aggregates can be prevented and reversed by thrombin exposures between 10 p M and 1 µ M . In contrast, thrombin potentiates rather than attenuates the β-amyloid-induced increased expression of basic fibroblast growth factor, suggesting that thrombin differentially modulates the effects of β-amyloid on astrocytes. Thrombin's effects on both neurons and astrocytes are mimicked by thrombin receptor-activating peptide and inhibited by two potent thrombin inhibitors, hirudin and protease nexin-1. These data provide both new insight into the signaling pathways underlying the cellular effects of β-amyloid and additional support for the role of thrombin as an important mediator of neuropathological events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号