首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrophy of the cortical thickness and gray matter volume are regarded as sensitive markers for the early clinical diagnosis of Alzheimer’s disease (AD). This study aimed to investigate differences in atrophy patterns in the frontal-subcortical circuits between MCI and AD, assess whether these differences were essential for the pathologic basis of cognitive impairment. A total of 131 individuals were recruited, including 45 with cognitively normal controls (CN), 46 with MCI, and 40 with AD. FreeSurfer software was used to perform volumetric measurements of the frontal-subcortical circuits from 3.0T magnetic resonance (MR) scans. Data revealed that both MCI and AD subjects had a thinner cortex in the left caudal middle frontal gyrus and the left lateral orbitofrontal gyrus compared with CN individuals. The left lateral orbitofrontal gyrus was also thinner in AD compared with MCI patients. There were no statistically significant differences in the cortical mean curvature among the three groups. Both MCI and AD subjects exhibited smaller bilateral hippocampus volumes compared with CN individuals. The volumes of the bilateral hippocampus and the right putamen were also smaller in AD compared with MCI patients. Logistic regression analyses revealed that the left lateral orbitofrontal gyrus and bilateral hippocampus were risk factors for cognitive impairment. These current results suggest that atrophy was heterogeneous in subregions of the frontal-subcortical circuits in MCI and AD patients. Among these subregions, the reduced thickness of the left lateral orbitofrontal and the smaller volume of the bilateral hippocampus seemed to be markers for predicting cognitive impairment.  相似文献   

2.
Directed network motifs are the building blocks of complex networks, such as human brain networks, and capture deep connectivity information that is not contained in standard network measures. In this paper we present the first application of directed network motifs in vivo to human brain networks, utilizing recently developed directed progression networks which are built upon rates of cortical thickness changes between brain regions. This is in contrast to previous studies which have relied on simulations and in vitro analysis of non-human brains. We show that frequencies of specific directed network motifs can be used to distinguish between patients with Alzheimer’s disease (AD) and normal control (NC) subjects. Especially interesting from a clinical standpoint, these motif frequencies can also distinguish between subjects with mild cognitive impairment who remained stable over three years (MCI) and those who converted to AD (CONV). Furthermore, we find that the entropy of the distribution of directed network motifs increased from MCI to CONV to AD, implying that the distribution of pathology is more structured in MCI but becomes less so as it progresses to CONV and further to AD. Thus, directed network motifs frequencies and distributional properties provide new insights into the progression of Alzheimer’s disease as well as new imaging markers for distinguishing between normal controls, stable mild cognitive impairment, MCI converters and Alzheimer’s disease.  相似文献   

3.
The cerebrospinal fluid (CSF) levels of the proapoptotic kinase R (PKR) and its phosphorylated PKR (pPKR) are increased in Alzheimer’s disease (AD), but whether CSF PKR concentrations are associated with cognitive decline in AD patients remain unknown. In this study, 41 consecutive patients with AD and 11 patients with amnestic mild cognitive impairment (aMCI) from our Memory Clinic were included. A lumbar puncture was performed during the following month of the clinical diagnosis and Mini-Mental State Examination (MMSE) evaluations were repeated every 6 months during a mean follow-up of 2 years. In AD patients, linear mixed models adjusted for age and sex were used to assess the cross-sectional and longitudinal associations between MMSE scores and baseline CSF levels of Aβ peptide (Aβ 1-42), Tau, phosphorylated Tau (p-Tau 181), PKR and pPKR. The mean (SD) MMSE at baseline was 20.5 (6.1) and MMSE scores declined over the follow-up (-0.12 point/month, standard error [SE] = 0.03). A lower MMSE at baseline was associated with lower levels of CSF Aβ 1–42 and p-Tau 181/Tau ratio. pPKR level was associated with longitudinal MMSE changes over the follow-up, higher pPKR levels being related with an exacerbated cognitive deterioration. Other CSF biomarkers were not associated with MMSE changes over time. In aMCI patients, mean CSF biomarker levels were not different in patients who converted to AD from those who did not convert.These results suggest that at the time of AD diagnosis, a higher level of CSF pPKR can predict a faster rate of cognitive decline.  相似文献   

4.

Background

Alzheimer’s disease (AD) is a devastating public health problem that affects over 5.4 million Americans. Depression increases the risk of Mild Cognitive Impairment (MCI) and AD. By understanding the influence of depression on cognition, the potential exists to identify subgroups of depressed elders at greater risk for cognitive decline and AD. The current study sought to: 1) clinically identify a sub group of geriatric patients who suffer from depression related cognitive impairment; 2) cross validate this depressive endophenotype of MCI/AD in an independent cohort.

Methods and Findings

Data was analyzed from 519 participants of Project FRONTIER. Depression was assessed with the GDS30 and cognition was assessed using the EXIT 25 and RBANS. Five GDS items were used to create the Depressive endophenotype of MCI and AD (DepE). DepE was significantly negatively related to RBANS index scores of Immediate Memory (B=-2.22, SE=.37, p<0.001), visuospatial skills (B=-1.11, SE=0.26, p<0.001), Language (B=-1.03, SE=0.21, p<0.001), Attention (B=-2.56, SE=0.49, p<0.001), and Delayed Memory (B=-1.54, SE = 037, p<0.001), and higher DepE scores were related to poorer executive functioning (EXIT25; B=0.65, SE=0.19, p=0.001). DepE scores significantly increased risk for MCI diagnosis (odds ratio [OR] = 2.04; 95% CI=1.54-2.69). Data from 235 participants in the TARCC (Texas Alzheimer’s Research & Care Consortium) were analyzed for cross-validation of findings in an independent cohort. The DepE was significantly related to poorer scores on all measures, and a significantly predicted of cognitive change over 12- and 24-months.

Conclusion

The current findings suggest that a depressive endophenotype of MCI and AD exists and can be clinically identified using the GDS-30. Higher scores increased risk for MCI and was cross-validated by predicting AD in the TARCC. A key purpose for the search for distinct subgroups of individuals at risk for AD and MCI is to identify novel treatment and preventative opportunities.  相似文献   

5.
6.
The preclinical Alzheimer''s disease (AD) - amnestic mild cognitive impairment (MCI) - is manifested by phenotypes classified into exclusively memory (single-domain) MCI (sMCI) and multiple-domain MCI (mMCI). We suggest that typical MCI-to-AD progression occurs through the sMCI-to-mMCI sequence as a result of the extension of initial pathological processes. To support this hypothesis, we assess myelin content with a Magnetization Transfer Ratio (MTR) in 21 sMCI and 21 mMCI patients and in 42 age-, sex-, and education-matched controls. A conjunction analysis revealed MTR reduction shared by sMCI and mMCI groups in the medial temporal lobe and posterior structures including white matter (WM: splenium, posterior corona radiata) and gray matter (GM: hippocampus; parahippocampal and lingual gyri). A disjunction analysis showed the spread of demyelination to prefrontal WM and insula GM in executive mMCI. Our findings suggest that demyelination starts in the structures affected by neurofibrillary pathology; its presence correlates with the clinical picture and indicates the method of MCI-to-AD progression. In vivo staging of preclinical AD can be developed in terms of WM/GM demyelination.  相似文献   

7.

Background

Weight loss is common in people with Alzheimer’s disease (AD) and it could be a marker of impending AD in Mild Cognitive Impairment (MCI) and improve prognostic accuracy, if accelerated progression to AD would be shown.

Aims

To assess weight loss as a predictor of dementia and AD in MCI.

Methods

One hundred twenty-five subjects with MCI (age 73.8 ± 7.1 years) were followed for an average of 4 years. Two weight measurements were carried out at a minimum time interval of one year. Dementia was defined according to DSM-IV criteria and AD according to NINCDS-ADRDA criteria. Weight loss was defined as a ≥4% decrease in baseline weight.

Results

Fifty-three (42.4%) MCI progressed to dementia, which was of the AD-type in half of the cases. Weight loss was associated with a 3.4-fold increased risk of dementia (95% CI = 1.5–6.9) and a 3.2-fold increased risk of AD (95% CI = 1.4–8.3). In terms of years lived without disease, weight loss was associated to a 2.3 and 2.5 years earlier onset of dementia and AD.

Conclusions

Accelerated progression towards dementia and AD is expected when weight loss is observed in MCI patients. Weight should be closely monitored in elderly with mild cognitive impairment.  相似文献   

8.
9.
The aim of this study is to identify mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) using amyloid imaging of beta amyloid (Aβ) deposition and FDG imaging of reflecting neuronal dysfunction as PET biomarkers. Sixty-eight MCI patients underwent cognitive testing, [11C]-PIB PET and [18F]-FDG PET at baseline and follow-up. Regions of interest were defined on co-registered MRI. PIB distribution volume ratio (DVR) was calculated using Logan graphical analysis, and the standardized uptake value ratio (SUVR) on the same regions was used as quantitative analysis for [18F]-FDG. Thirty (44.1%) of all 68 MCI patients converted to AD over 19.2±7.1 months. The annual rate of MCI conversion was 23.4%. A positive Aβ PET biomarker significantly identified MCI due to AD in individual MCI subjects with a sensitivity (SS) of 96.6% and specificity (SP) of 42.1%. The positive predictive value (PPV) was 56.8%. A positive Aβ biomarker in APOE ε4/4 carriers distinguished with a SS of 100%. In individual MCI subjects who had a prominent impairment in episodic memory and aged older than 75 years, an Aβ biomarker identified MCI due to AD with a greater SS of 100%, SP of 66.6% and PPV of 80%, compared to FDG biomarker alone or both PET biomarkers combined. In contrast, when assessed in precuneus, both Aβ and FDG biomarkers had the greatest level of certainty for MCI due to AD with a PPV of 87.8%. The Aβ PET biomarker primarily defines MCI due to AD in individual MCI subjects. Furthermore, combined FDG biomarker in a cortical region of precuneus provides an added diagnostic value in predicting AD over a short period.  相似文献   

10.
Matrix metalloproteinases (MMPs) and oxidative stress have been implicated in neurological diseases such as Alzheimer’s disease (AD). Plasma MMP-2 and MMP-9 activities were assessed in Mild Cognitive Impairment (MCI) and AD subjects compared with aged-matched controls, and subsequently analysed in relation to oxidative stress markers. Both MMP-2 and MMP-9 showed no significant changes versus control subjects. Plasma glutathione peroxidase Se-dependent (GPx-Se) activity and malondialdehyde (MDA) levels were higher in AD than in controls (< 0.05), suggesting a role for GPx-Se in controlling oxidative stress in AD. Negative correlations were observed between MMPs and MDA in AD and MCI patients (P < 0.05). In conclusion, oxidative stress events did not include activation of MMPs and this similar pattern in AD and MCI suggests that both are biochemically equivalent.  相似文献   

11.
Alzheimer’s Disease (AD) is the most frequent neurodegenerative form of dementia. Although dementia cannot be cured, it is very important to detect preclinical AD as early as possible. Several studies demonstrated the effectiveness of the joint use of structural Magnetic Resonance Imaging (MRI) and cognitive measures to detect and track the progression of the disease. Since hippocampal atrophy is a well known biomarker for AD progression state, we propose here a novel methodology, exploiting it as a searchlight to detect the best discriminating features for the classification of subjects with Mild Cognitive Impairment (MCI) converting (MCI-c) or not converting (MCI-nc) to AD. In particular, we define a significant subdivision of the hippocampal volume in fuzzy classes, and we train for each class Support Vector Machine SVM classifiers on cognitive and morphometric measurements of normal controls (NC) and AD patients. From the ADNI database, we used MRI scans and cognitive measurements at baseline of 372 subjects, including 98 subjects with AD, and 117 NC as a training set, 86 with MCI-c and 71 with MCI-nc as an independent test set. The accuracy of early diagnosis was evaluated by means of a longitudinal analysis. The proposed methodology was able to accurately predict the disease onset also after one year (median AUC = 88.2%, interquartile range 87.2%–89.0%). Besides its robustness, the proposed fuzzy methodology naturally incorporates the uncertainty degree intrinsically affecting neuroimaging features. Thus, it might be applicable in several other pathological conditions affecting morphometric changes of the brain.  相似文献   

12.
13.
Recent studies have suggested a protective role of physiological β-amyloid autoantibodies (Aβ-autoantibodies) in Alzheimer’s disease (AD). However, the determination of both free and dissociated Aβ-autoantibodies in serum hitherto has yielded inconsistent results regarding their function and possible biomarker value. Here we report the application of a new sandwich enzyme-linked immunosorbent assay (ELISA) for the determination of antigen-bound Aβ-autoantibodies (intact Aβ-IgG immune complexes) in serum and cerebrospinal fluid (CSF) of a total number of 112 AD patients and age- and gender-matched control subjects. Both serum and CSF levels of Aβ-IgG immune complexes were found to be significantly higher in AD patients compared to control subjects. Moreover, the levels of Aβ-IgG complexes were negatively correlated with the cognitive status across the groups, increasing with declining cognitive test performance of the subjects. Our results suggest a contribution of IgG-type autoantibodies to Aβ clearance in vivo and an increased immune response in AD, which may be associated with deficient Aβ-IgG removal. These findings may contribute to elucidating the role of Aβ-autoantibodies in AD pathophysiology and their potential application in AD diagnosis.  相似文献   

14.
Glycoproteins in cerebrospinal fluid (CSF) are altered in Alzheimer's Disease (AD) patients compared to control individuals. We have utilized albumin depletion prior to 2D gel electrophoresis to enhance glycoprotein concentration for image analysis as well as structural glycoprotein determination without glycan release using mass spectrometry (MS). The benefits of a direct glycoprotein analysis approach include minimal sample manipulation and retention of structural details. A quantitative comparison of gel-separated glycoprotein isoforms from twelve AD patients and twelve control subjects was performed with glycoprotein-specific and total protein stains. We have also compared glycoforms in pooled CSF obtained from AD patients and control subjects with mass spectrometry. One isoform of alpha1-antitrypsin showed decreased glycosylation in AD patients while another glycosylated isoform of an unassigned protein was up-regulated. Protein expression levels of alpha1-antitrypsin were decreased, while the protein levels of apolipoprotein E and clusterin were increased in AD. No specific glycoform could be specifically assigned to AD.  相似文献   

15.
The conceptual significance of understanding functional brain alterations and cognitive deficits associated with Alzheimer’s disease (AD) process has been widely established. However, the whole-brain functional networks of AD and its prodromal stage, mild cognitive impairment (MCI), are not well clarified yet. In this study, we compared the characteristics of the whole-brain functional networks among cognitively normal (CN), MCI, and AD individuals by applying graph theoretical analyses to [18F] fluorodeoxyglucose positron emission tomography (FDG-PET) data. Ninety-four CN elderly, 183 with MCI, and 216 with AD underwent clinical evaluation and FDG-PET scan. The overall small-world property as seen in the CN whole-brain network was preserved in MCI and AD. In contrast, individual parameters of the network were altered with the following patterns of changes: local clustering of networks was lower in both MCI and AD compared to CN, while path length was not different among the three groups. Then, MCI had a lower level of local clustering than AD. Subgroup analyses for AD also revealed that very mild AD had lower local clustering and shorter path length compared to mild AD. Regarding the local properties of the whole-brain networks, MCI and AD had significantly decreased normalized betweenness centrality in several hubs regionally associated with the default mode network compared to CN. Our results suggest that the functional integration in whole-brain network progressively declines due to the AD process. On the other hand, functional relatedness between neighboring brain regions may not gradually decrease, but be the most severely altered in MCI stage and gradually re-increase in clinical AD stages.  相似文献   

16.

Background

Mild cognitive impairment (MCI) may represent an early stage of dementia conferring a particularly high annual risk of 15–20% of conversion to Alzheimer’s disease (AD). Recent findings suggest that not only gray matter (GM) loss but also a decline in white matter (WM) integrity may be associated with imminent conversion from MCI to AD.

Objective

In this study we used Voxel-based morphometry (VBM) to examine if gray matter loss and/or an increase of the apparent diffusion coefficient (ADC) reflecting mean diffusivity (MD) are an early marker of conversion from MCI to AD in a high risk population.

Method

Retrospective neuropsychological and clinical data were collected for fifty-five subjects (MCI converters n = 13, MCI non-converters n = 14, healthy controls n = 28) at baseline and one follow-up visit. All participants underwent diffusion weighted imaging (DWI) and T1-weighted structural magnetic resonance imaging scans at baseline to analyse changes in GM density and WM integrity using VBM.

Results

At baseline MCI converters showed impaired performance in verbal memory and naming compared to MCI non-converters. Further, MCI converters showed decreased WM integrity in the frontal, parietal, occipital, as well as the temporal lobe prior to conversion to AD. Multiple regression analysis showed a positive correlation of gray matter atrophy with specific neuropsychological test results.

Conclusion

Our results suggest that additionally to morphological changes of GM a reduced integrity of WM indicates an imminent progression from MCI stage to AD. Therefore, we suggest that DWI is useful in the early diagnosis of AD.  相似文献   

17.

Objectives

To understand the relation between risk genes for Alzheimer’s disease (AD) and their influence on biomarkers for AD, we examined the association of AD in the Finnish cohort with single nucleotide polymorphisms (SNPs) from top AlzGene loci, genome-wide association studies (GWAS), and candidate gene studies; and tested the correlation between these SNPs and AD markers Aβ1–42, total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF).

Methods

We tested 25 SNPs for genetic association with clinical AD in our cohort comprised of 890 AD patients and 701-age matched healthy controls using logistic regression. For the correlational study with biomarkers, we tested 36 SNPs in a subset of 222 AD patients with available CSF using mixed models. Statistical analyses were adjusted for age, gender and APOE status. False discovery rate for multiple testing was applied. All participants were from academic hospital and research institutions in Finland.

Results

APOE-ε4, CLU rs11136000, and MS4A4A rs2304933 correlated with significantly decreased Aβ1–42 (corrected p<0.05). At an uncorrected p<0.05, PPP3R1 rs1868402 and MAPT rs2435211 were related with increased t-tau; while SORL1 rs73595277 and MAPT rs16940758, with increased p-tau. Only TOMM40 rs2075650 showed association with clinical AD after adjusting for APOE-ε4 (p = 0.007), but not after multiple test correction (p>0.05).

Conclusions

We provide evidence that APOE-ε4, CLU and MS4A4A, which have been identified in GWAS to be associated with AD, also significantly reduced CSF Aβ1–42 in AD. None of the other AlzGene and GWAS loci showed significant effects on CSF tau. The effects of other SNPs on CSF biomarkers and clinical AD diagnosis did not reach statistical significance. Our findings suggest that APOE-ε4, CLU and MS4A4A influence both AD risk and CSF Aβ1–42.  相似文献   

18.
From the standpoint of early interventions for dementia, a convenient method of diagnosis using biomarkers is required for Alzheimer’s disease (AD) in the early stage as well as amnesic mild cognitive impairment (aMCI). Focusing on differences in DNA methylation due to AD and aMCI, in the present study, we first conducted genome-wide screening, measuring blood DNA methylation levels by the Illumina Infinium HD Methylation Assay in 3 small age-and gender-matched groups consisting of 4 subjects each: normal controls (NC), aMCI and AD. The genome-wide analysis produced 11 DNA methylation loci that distinguished the 3 groups. For confirmation, we increased group sizes and examined samples by pyrosequencing which revealed that DNA methylation in the NCAPH2/LMF2 promoter region was significantly decreased in the AD (n = 30) and aMCI (n = 28) groups as compared to the NC group (n = 30) (P < 0.0001, ANCOVA). No association was found between methylation levels and APOE genotype. NCAPH2/LMF2 methylation levels were considered to potentially be a convenient and useful biomarker for diagnosis of AD and aMCI.  相似文献   

19.
Alzheimer’s disease (AD), the most common form of dementia, shares many aspects of abnormal brain aging. We present a novel magnetic resonance imaging (MRI)-based biomarker that predicts the individual progression of mild cognitive impairment (MCI) to AD on the basis of pathological brain aging patterns. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estimate the brain age of a given new subject. If the estimated age is higher than the chronological age, a positive brain age gap estimation (BrainAGE) score indicates accelerated atrophy and is considered a risk factor for conversion to AD. Here, the BrainAGE framework was applied to predict the individual brain ages of 195 subjects with MCI at baseline, of which a total of 133 developed AD during 36 months of follow-up (corresponding to a pre-test probability of 68%). The ability of the BrainAGE framework to correctly identify MCI-converters was compared with the performance of commonly used cognitive scales, hippocampus volume, and state-of-the-art biomarkers derived from cerebrospinal fluid (CSF). With accuracy rates of up to 81%, BrainAGE outperformed all cognitive scales and CSF biomarkers in predicting conversion of MCI to AD within 3 years of follow-up. Each additional year in the BrainAGE score was associated with a 10% greater risk of developing AD (hazard rate: 1.10 [CI: 1.07–1.13]). Furthermore, the post-test probability was increased to 90% when using baseline BrainAGE scores to predict conversion to AD. The presented framework allows an accurate prediction even with multicenter data. Its fast and fully automated nature facilitates the integration into the clinical workflow. It can be exploited as a tool for screening as well as for monitoring treatment options.  相似文献   

20.
Some researchers have suggested that the default mode network (DMN) plays an important role in the pathological mechanisms of Alzheimer’s disease (AD). To examine whether the cortical activities in DMN regions show significant difference between mild AD from mild cognitive impairment (MCI), electrophysiological responses were analyzed from 21 mild Alzheimer’s disease (AD) and 21 mild cognitive impairment (MCI) patients during an eyes closed, resting-state condition. The spectral power and functional connectivity of the DMN were estimated using a minimum norm estimate (MNE) combined with fast Fourier transform and imaginary coherence analysis. Our results indicated that source-based EEG maps of resting-state activity showed alterations of cortical spectral power in mild AD when compared to MCI. These alterations are characteristic of attenuated alpha or beta activities in the DMN, as are enhanced delta or theta activities in the medial temporal, inferior parietal, posterior cingulate cortex and precuneus. With regard to altered synchronization in AD, altered functional interconnections were observed as specific connectivity patterns of connection hubs in the precuneus, posterior cingulate cortex, anterior cingulate cortex and medial temporal regions. Moreover, posterior theta and alpha power and altered connectivity in the medial temporal lobe correlated significantly with scores obtained on the Mini-Mental State Examination (MMSE). In conclusion, EEG is a useful tool for investigating the DMN in the brain and differentiating early stage AD and MCI patients. This is a promising finding; however, further large-scale studies are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号