共查询到20条相似文献,搜索用时 8 毫秒
1.
Lithium has been used for the treatment of bipolar mood disorder and is shown to have neuroprotective properties. Since lithium
inhibits the activity of glycogen synthase kinase 3 (GSK3) which is implicated in various human diseases, particularly neurodegenerative
diseases, the therapeutic potential of lithium receives great attention. Parkinson’s disease (PD) is the second most common
neurodegenerative disease, characterized by the pathological loss of dopaminergic neurons in the substantia nigra pars compacta
(SNpc). Intranigral injection of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) causes selective and progressive
degeneration of dopaminergic neurons in SNpc, and is a commonly used animal model of PD. The current study was designated
to determine whether lithium is effective in alleviating 6-OHDA-induced neurodegeneration in the SNpc of rats. We demonstrated
that chronic subcutaneous administration of lithium inhibited GSK3 activity in the SNpc, which was evident by an increase
in phosphorylation of GSK3β at serine 9, cyclin D1 expression, and a decrease in tau phosphorylation. 6-OHDA did not affect
GSK3 activity in the SNpc. Moreover, lithium was unable to alleviate 6-OHDA-induced degeneration of SNpc dopaminergic neurons.
The results suggest that GSK3 is minimally involved in the neurodegeneration in the rat 6-OHDA model of PD. 相似文献
3.
Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson’s disease (PD) mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs) and an olfactory behavior test (cookie-finding test). We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium. 相似文献
4.
Neurochemical Research - Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons,... 相似文献
5.
The exact mechanism of gut dysfunction in Parkinson’s disease and, conversely, the role of gut pathology in brain dopaminergic degeneration are controversial. We investigated the effects of nigral lesions on the colonic neurotransmission, the effect of gut inflammation on the nigrostriatal dopaminergic function, and the possible involvement of the vagus nerve and the local renin-angiotensin system (RAS). Nigrostriatal dopamine depletion was performed by bilateral injection 6-hydroxydopamine, and gut inflammation was induced by dextran sulfate sodium salt treatment in rats and mice, respectively, with or without vagal disruption. A decrease in central dopamine levels induced a decrease in colonic dopamine types 1 and 2 receptor expression together with an increase in the colonic levels of dopamine and a decrease in the levels of acetylcholine, which may explain a decrease in gut motility. Central dopaminergic depletion also induced an increase in the colonic levels of inflammatory and oxidative stress markers together with activation of the pro-inflammatory arm of the local RAS. Mice with acute (1 week) or subchronic (3 weeks) gut inflammation did not show a significant increase in colonic α-synuclein and phosphorylated α-synuclein expression during this relatively short survival period. Interestingly, we observed early changes in the nigrostriatal dopaminergic homeostasis, dopaminergic neuron death, and increased levels of nigral pro-inflammatory markers and RAS pro-inflammatory activity. The present results show that a dysregulation of the neural bidirectional gut-brain interaction may explain the early gut disturbances observed in parkinsonian patients, and also the increase in vulnerability of nigral dopaminergic neurons after gut inflammation. 相似文献
6.
The glial cell line-derived neurotrophic factor (GDNF) potential as a therapeutic agent for the treatment of Parkinson’s Disease (PD) has been extensively explored. However, the mechanism of the GDNF neuroprotective effects is still unclear. In this study, the neuroprotective mechanism of the GDNF in the PD cellular models, which was obtained by the 6-hydroxydopamine (6-OHDA)-induced dopaminergic (DA) cell line MN9D damage was investigated by microarray. Interestingly, 54 constitutively increased or decreased genes were detected, 17 of which have not been reported previously. The expression of 5 up-regulated and 5 down-regulated genes which displayed the most obvious changes compared to the no GDNF treatment cells and was previously proven to be related to cell survival was validated by real-time PCR and western blot. Moreover, the up-regulated gene Ager and down-regulated gene Ccnl2 which were related to the PI-3K/Akt signaling pathway, but not researched in the neuron-cells, were investigated by overexpression and RNA interference. Overexpression of Ager or knockdown the expression of Ccnl2 decreased the damage to MN9D cells caused by 6-OHDA and reduced their apoptosis. All these results suggested that the protective effects of the GDNF on the 6-OHDA damaged MN9D cells could be understood by enhancing the expression of the apoptosis inhibiting genes and decreasing the expression of the apoptosis promoting genes. Thus, this study might provide a number of specific candidates and potential targets to investigate the protective mechanism of GDNF in DA neurons. 相似文献
8.
ObjectivesHealth-related quality of life (HRQoL) is considered a very important outcome indicator in patients with Parkinson’s disease (PD). A broad list of motor and non-motor features have been shown to affect HRQoL in PD, however, there is a dearth of information about the complexity of interrelationships between determinants of HRQoL in different PD phenotypes. We aimed to find independent determinates and the best structural model for HRQoL, also to investigate the heterogeneity in HRQoL between PD patients with different phenotypes regarding onset-age, progression rate and dominant symptom. MethodsA broad spectrum of demographic, motor and non-motor characteristics were collected in 157 idiopathic PD patients, namely comorbidity profile, nutritional status, UPDRS (total items), psychiatric symptoms (depression, anxiety), fatigue and psychosocial functioning through physical examination, validated questionnaires and scales. Structural equation model (SEM) and multivariate regressions were applied to find determinants of Parkinson’s disease summary index (PDSI) and different domains of HRQoL (PDQ-39). ResultsFemale sex, anxiety, depression and UPDRS-part II scores were the significant independent determinants of PDSI. A structural model consisting of global motor, global non-motor and co-morbidity indicator as three main components was able to predict 89% of the variance in HRQoL. In older-onset and slow-progression phenotypes, the motor domain showed smaller contribution on HRQoL and the majority of its effects were mediated through non-motor features. Comorbidity component was a significant determinant of HRQoL only among older-onset and non-tremor-dominant PD patients. Fatigue was not a significant indicator of non-motor component to affect HRQoL in rapid-progression PD. ConclusionsOur findings showed outstanding heterogeneities in the pattern and determinants of HRQoL among PD phenotypes. These factors should be considered during the assessments and developing personalized interventions to improve HRQOL in PD patients with different phenotypes or prominent feature. 相似文献
9.
The neuroprotective effects of granulocyte colony-stimulating factor (G-CSF) were reported in several neurological disease models, including Parkinson’s disease (PD). In the present study, we investigated the therapeutic effect of G-CSF after the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD was established. G-CSF was subcutaneously administered into C57BL/6 mice that had undergone systemic MPTP injections. We found that G-CSF treatment markedly increased the number of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the G-CSF-treated group. Consistent with this finding, we found a significant increase in dopamine release under high K + stimulation in the striatum of the G-CSF-treated animals compared to the MPTP-exposed mice. Finally, we observed a persistent recovery of locomotor function in the G-CSF-treated animals. These results suggest the potential therapeutic value of G-CSF in treating PD. However, our bromodeoxyuridine labeling experiment failed to identify any newly generated dopaminergic neurons in SNpc. This might indicate an indirect effect of G-CSF on cell proliferation. The underlying mechanism of G-CSF is under further investigation. 相似文献
10.
BackgroundBradykinesia is a cardinal feature of Parkinson’s disease (PD). Despite its disabling impact, the precise cause of this symptom remains elusive. Recent thinking suggests that bradykinesia may be more than simply a manifestation of motor slowness, and may in part reflect a specific deficit in the operation of motivational vigour in the striatum. In this paper we test the hypothesis that movement time in PD can be modulated by the specific nature of the motivational salience of possible action-outcomes. Methodology/Principal FindingsWe developed a novel movement time paradigm involving winnable rewards and avoidable painful electrical stimuli. The faster the subjects performed an action the more likely they were to win money (in appetitive blocks) or to avoid a painful shock (in aversive blocks). We compared PD patients when OFF dopaminergic medication with controls. Our key finding is that PD patients OFF dopaminergic medication move faster to avoid aversive outcomes (painful electric shocks) than to reap rewarding outcomes (winning money) and, unlike controls, do not speed up in the current trial having failed to win money in the previous one. We also demonstrate that sensitivity to distracting stimuli is valence specific. Conclusions/SignificanceWe suggest this pattern of results can be explained in terms of low dopamine levels in the Parkinsonian state leading to an insensitivity to appetitive outcomes, and thus an inability to modulate movement speed in the face of rewards. By comparison, sensitivity to aversive stimuli is relatively spared. Our findings point to a rarely described property of bradykinesia in PD, namely its selective regulation by everyday outcomes. 相似文献
11.
Neurochemical Research - Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by impaired motor symptoms induced by the degeneration of dopaminergic neurons of the... 相似文献
12.
Biochemistry (Moscow) - DJ-1, also known as Parkinson’s disease protein 7, is a multifunctional protein ubiquitously expressed in cells and tissues. Interacting with proteins of various... 相似文献
13.
The ratio of the concentrations of Cu 2+-ceruloplasmin/Fe 3+-transferrin in the blood plasma of 54 patients at different stages of Parkinson’s disease treated and not treated with L-DOPA was estimated by EPR-spectroscopy. It was established that in patients who suffer from Parkinson’s disease, the value of ceruloplasmin/ transferrin increased by 157% in comparison with the control group of clinically healthy people of the same age group. In patients with Parkinson’s disease, the ratio of ceruloplasmin/transferrin increased at stage 1 of the disease by 119%, at stage 2 by 117%, and at stage 3 by 135% in comparison with the control group. There was no statistically significant difference between the ratio of ceruloplasmin/transferrin in patients who received and did not recive L-DOPA replacement therapy. These data reveal changes in the functioning of the ceruloplasmin: transferrin system, which decreases the content of toxic ions of Fe 2+ in the plasma of patients with Parkinson’s disease. These changes are a pathogenetically significant factor of Parkinson’s disease at all stages of the disease. 相似文献
14.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN) is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SN C, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD. 相似文献
15.
As a novel discovered regulated cell death pattern, ferroptosis has been associated with the development of Parkinson’s disease (PD) and has attracted widespread attention. Nevertheless, the relationship between ferroptosis and PD pathogenesis is still unclear. This study aims to investigate the effect of iron overload on dopaminergic (DA) neurons and its correlation with ferroptosis. Here we use nerve growth factor (NGF) induced PC12 cells which are derived from pheochromocytoma of the rat adrenal to establish a classical PD in vitro model. We found significantly decreased cell viability in NGF-PC12 cell under ammonium ferric citrate (FAC) administration. Moreover, excessive intracellular iron ions induced the increase of (reactive oxygen species) ROS release as well as the decrease of mitochondrial membrane potential in PC12-NGF cells. In addition, we also found that overloaded iron can activate cell apoptosis and ferroptosis pathways, which led to cell death. Furthermore, MPP-induced PD cells were characterized by mitochondrial shrinkage, decreased expression of glutathione peroxidase 4 (Gpx4) and ferritin heavy chain (FTH1), and increased divalent metal transporter (DMT1) and transferrin receptor 1 (TfR1) expression level. In contrast, Lip-1 and DFO increased the expression level of GPX4 and FTH1 compared to MPP-induced PD cell. In conclusion, we indicated that overloaded intracellular iron contributes to neurons death via apoptosis and ferroptosis pathways, while DFO, an iron chelator, can inhibit ferroptosis in order to protect the neurons in vitro. 相似文献
16.
Mitochondrial dysfunction and oxidative stress are implicated in the neurodegenerative process in Parkinson??s disease (PD). Moreover, c-Jun N-terminal kinase (JNK) plays an important role in dopaminergic neuronal death in substantia nigra pars compacta. Tauroursodeoxycholic acid (TUDCA) acts as a mitochondrial stabilizer and anti-apoptotic agent in several models of neurodegenerative diseases. Here, we investigated the role of TUDCA in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration in a mouse model of PD. We evaluated whether TUDCA modulates MPTP-induced degeneration of dopaminergic neurons in the nigrostriatal axis, and if that can be explained by regulation of JNK phosphorylation, reactive oxygen species (ROS) production, glutathione S-transferase (GST) catalytic activation, and Akt signaling, using C57BL/6 glutathione S-transferase pi (GSTP) null mice. TUDCA efficiently protected against MPTP-induced dopaminergic degeneration. We have previously demonstrated that exacerbated JNK activation in GSTP null mice resulted in increased susceptibility to MPTP neurotoxicity. Interestingly, pre-treatment with TUDCA prevented MPTP-induced JNK phosphorylation in mouse midbrain and striatum. Moreover, the anti-oxidative role of TUDCA was demonstrated in vivo by impairment of ROS production in the presence of MPTP. Finally, results herein suggest that the survival pathway activated by TUDCA involves Akt signaling, including downstream Bad phosphorylation and NF-??B activation. We conclude that TUDCA is neuroprotective in an in vivo model of PD, acting mainly by modulation of JNK activity and cellular redox thresholds, together with activation of the Akt pro-survival pathway. These results open new perspectives for the pharmacological use of TUDCA, as a modulator of neurodegeneration in PD. 相似文献
17.
Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively. 相似文献
18.
Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson’s disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders. 相似文献
20.
Paeoniflorin (PF) is the main active component extracted from the roots of Paeonialactiflora, a traditional Chinese medicine used for the treatment of neurodegenerative disorders, especially Parkinson’s disease (PD). The degeneration of dopaminergic (DA-) neurons in PD may be caused by pathological activation of acid-sensing ion channels (ASICs). Thus, we designed a series of experiments to evaluate the therapeutic effects of PF and to test whether its effects are related to its inhibitory effect on ASIC1a. We found that systemic administration of PF or ASICs blockers (psalmotoxin-1 and amiloride) improved behavioral symptoms, delayed DA-neuronal loss and attenuated the reduction of dopamine (DA) and its metabolites in a rat model of 6-hydroxydopamine (6-OHDA)-induced PD. In addition, our data showed that PF, like ASICs blockers, regulated the expression of ASIC1a, decreased the level of α-synuclein (α-SYN), and improved autophagic dysfunction. Further experiments showed that ASIC1a knockdown down-regulated the α-SYN level and alleviated the autophagic injury in the 6-OHDA-treated ASIC1a-silenced PC12 cells. In summary, these findings indicate that PF enhanced the autophagic degradation of α-SYN and, thus, protected DA-neurons against the neurotoxicity caused by 6-OHDA. These findings also provide experimental evidence that PF may be a neuroprotectant for PD by acting on ASIC1a and that ASIC1a may be involved in the pathogenesis of PD. 相似文献
|