首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of chronic ethanol consumption on the level of the t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of ethanol the rate of lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. 3. Ethanol significantly decreased the intensity of lipid peroxidation in microsomes, but did not affect the Bu'OOH-dependent process in mitochondria. 4. The level of lipid peroxidation was reduced after incubation of the total particulate fraction (mitochondria plus microsomes) with the undialysed cytosol from ethanol-treated rat liver. Dialysis of the cytosol prevented depressive effect of ethanol treatment on lipid peroxidation. 5. Reduced glutathione (0.1-1.0 mM) was shown to decrease the rate of lipid peroxidation in rat liver microsomes, but did not affect its level in mitochondria. 6. Pyrazole injections to rats reduced and phenobarbital treatment increased the level of the Bu'OOH-dependent lipid peroxidation in liver microsomes. 7. The data obtained indicate that the Bu'OOH-dependent lipid peroxidation is not an appropriate marker of the ethanol-induced oxidative stress in rat liver cells.  相似文献   

2.
Phylo- and ontogenetic aspects of lipid peroxidation and antioxidative enzyme system in the retina of vertebrates were studied. It was established that both the intensity of lipid peroxidation and the activity of glutathione peroxidase in the retina of different vertebrate animals (carp, frog, tortoise, pigeon, rabbit) considerably diminished with evolution. The differences in the intensity of lipid peroxidation and the activity of glutathione peroxidase between dark- and light-adapted retinas also decreased depending on the level of the development. The activity of glutathione peroxidase in the retina of chick embryos was found only at the end of the incubation period.  相似文献   

3.
The effect of quercetin on iron-catalyzed hepatic microsomal lipid peroxidation was investigated. Quercetin was shown to be a potent inhibitor of iron-induced lipid peroxidation with a I50 of 0.2 mM. The inhibitory effects of quercetin were dependent on incubation time, protein concentration and iron content in the incubation mixture. Since quercetin does not interact with malonyl-aldehyde it can be concluded that the inhibition of iron induced lipid peroxidation is due to lipid antioxidant property and this may serve as a model for the study by which "free" iron may initiate peroxidation in vivo.  相似文献   

4.
The influence of extremely low-frequency magnetic fields on lipid peroxidation products and total thiol groups in the brain of mongrel mice has been investigated. Certain changes in time organization and interrelation of the studied processes under the effect of the magnetic field depending on frequency are shown.  相似文献   

5.
The fluorescent probes, perilene and diphenyl hexatriene, were used to study changes in the lipid phase of erythrocytic ghosts induced by ionizing radiation (100-1000 Gy) and lipid peroxidation initiated by Fe2+ (5-100 microM). Both of the factors were shown to bring about similar changes in the membrane, that is, an increase in the viscosity of the probe localization sites and a decrease in diphenyl hexatriene fluorescence intensity. During the postirradiation incubation of the exposed membranes they were additionally damaged whereas upon peroxidation, most of the changes occurred after 15-min incubation with Fe2+.  相似文献   

6.
Among tumors in general, Ehrlich ascites tumor cells are particularly resistant to lipid peroxidation. In this study lipid peroxidation was measured in terms of the formation of malondialdehyde-equivalent material in Ehrlich tumor cells during incubation in vitro. It was shown that the high antioxidant potential of these cells could be overcome by a strong radical-promoting agent like ferrous ion. Various amino acids were tested for their capability to augment the effect of Fe(II). Histidine and its 3-methyl-derivative turned out to be the most effective pro-oxidants, whose action could be ascribed to the presence of the imidazole group. From studies with homogenized and denatured cells it was concluded that lipid peroxidation stimulated by Fe(II)-histidinate is an autoxidation process and that no carrier effect of iron by histidine is predominating. The stimulatory action of Fe(II)-histidinate could be completely suppressed by vitamin C, which was shown to be a potent anti-oxidant under the conditions used. The combined application of Fe(II)-histidinate and vitamin C may offer a means to study lipid peroxidation of Ehrlich tumor cells in a controlled manner.  相似文献   

7.
Studies were carried out to determine the effects of lung and liver cytosol on pulmonary and hepatic mierosomal lipid peroxidation, to determine the cytosolic concentrations of various substances which affect lipid peroxidation, and to determine which of these substances is responsible for the effects of the cytosol on lipid peroxidation. Lung cytosol inhibits both enzymatic (NADPH-induced) and nonenzymatic (Fe2+-induced) lung microsomal lipid peroxidation. In contrast, liver cytosol stimulates lipid peroxidation in hepatic microsomes during incubation alone, enhances Fe2+-stimulated lipid peroxidation, and has no effect on the NADPH-induced response. Substances which are known to be involved in inhibition of lipid peroxidation, including glutathione, glutathione reductase, glutathione peroxidase, and superoxide dismutase, are found in greater concentrations in liver cytosol than in lung cytosol. However, ascorbate is found in approximately equal concentrations in pulmonary and hepatic cytosol. Most of the effects of the cytosol on lipid peroxidation seem to be due to ascorbate and glutathione. For example, ascorbate, in concentrations found in lung cytosol, inhibits lung microsomal lipid peroxidation to about the same extent as the cytosol. The effects of liver cytosol on hepatic microsomal lipid peroxidation can be duplicated by concentrations of ascorbate and glutathione normally found in the cytosol; i.e., ascorbate stimulates and glutathione inhibits lipid peroxidation with the net effect being similar to that of liver cytosol. The results indicate that ascorbate has opposite effects on pulmonary and hepatic microsomal lipid peroxidation and suggest that ascorbate plays a major role in protecting pulmonary tissue against the harmful effects of lipid peroxidation.  相似文献   

8.
Simultaneous addition of ascorbic acid and organic hydroperoxides to rat liver microsomes resulted in enhanced lipid peroxidation (approximately threefold) relative to incubation of organic hydroperoxides with microsomes alone. No lipid peroxidation was evident in incubations of ascorbate alone with microsomes. The stimulatory effect of ascorbate on linoleic acid hydroperoxide (LAHP)-dependent peroxidation was evident at all times whereas stimulation of cumene hydroperoxide (CHP)-dependent peroxidation occurred after a lag phase of up to 20 min. EDTA did not inhibit CHP-dependent lipid peroxidation but completely abolished ascorbate enhancement of lipid peroxidation. Likewise, EDTA did not significantly inhibit peroxidation by LAHP but dramatically reduced ascorbate enhancement of lipid peroxidation. The results reveal a synergistic prooxidant effect of ascorbic acid on hydroperoxide-dependent lipid peroxidation. The inhibitory effect of EDTA on enhanced peroxidation suggests a possible role for endogenous metals mobilized by hydroperoxide-dependent oxidations of microsomal components.  相似文献   

9.
Considering the lipophilicity of aspirin (log P = -1.15), a significant contributor to its action mechanism, interaction of the drug with the whole lipids of goat blood have been investigated using phospholipid binding and lipid peroxidation phenomena as the parameters under investigation. The lipid content change along with the peroxidation induced by aspirin and its suppression with ascorbic acid had been quantitatively measured. Significant loss in phospholipid was observed after incubation of whole blood with aspirin in varying periods of time. This may be ascribed to binding affinity of aspirin with lipid constituents in blood, which may have potential role in its therapeutic effect. Lipid peroxidation induction potential of aspirin caused significant extent of peroxidation. Ascorbic acid, an antioxidant could significantly reduce aspirin induced lipid peroxidation.  相似文献   

10.
The modifying effect of radioprotectors (serotonin, cysteamine, ionol) on lipid peroxidation intensification of liver microsomes caused by rat skin ultraviolet radiation has been studied. A possible mechanism of action of these compounds on the investigated indexes during their preventive injection is under discussion.  相似文献   

11.
The effect of dipalmitoyl phosphatidylcholine (DPPC) and its structural fragments--phosphatidic acid (PA) and choline chloride--on the ascorbate-dependent mice liver microsomal lipid peroxidation (LP) has been studied at the different LP rate. At DPPC, PA and choline chloride introduction into the incubation medium before the onset of peroxidation induction DPPC causes the more considerable inhibition of LP than PA each separate fragment. The inhibition effect of DPPC is lower than PA or choline chloride when DPPC, PA and choline chloride added on the background of developing process of peroxidation (e.i. after LP induction). A specific regulatory role of PC in the normal cell membrane LP process and during pathologic development is under discussion.  相似文献   

12.
The indirect effect of rat skin ultraviolet (UV) irradiation on lipid peroxidation and enzymatic systems of the liver has been studied. The processes of lipid peroxidation have been intensified after 72 hours of UV-irradiation, which is evidently due both to the activation of enzymatic system of initiation and propagation of lipid peroxidation and to the parallel decrease of the activity of enzymatic system regulation of given process in liver.  相似文献   

13.
The enhancement of lipid peroxidation in neutrophils (the content of malonic dialdehyde increased by 10.2%) has been shown after a 1-h exposure to a combined constant (42 μT) magnetic field and a weak low-frequency magnetic field (1.0, 4.4, and 16.5 Hz; 860 nT) collinear to it. No correlation was found between this effect and the process of functional pre-activation (priming) of neutrophils as a result of the combined action of magnetic fields detected by chemiluminescence enhancement in response to the introduction of the bacterial peptide N-formyl–Met–Leu–Phe in the presence of luminol, since ionol (10 μM), an inhibitor of lipid peroxidation, did not reduce the neutrophil priming index in this case. Preliminary addition of histidine (0.1 and 1.0 mM), a singlet oxygen scavenger, also did not decrease the priming index. A myeloperoxidase inhibitor, sodium azide (0.1 mM), exerted a significant inhibitory effect on the chemiluminescence intensity of the neutrophil suspension; priming did not develop in the presence of this inhibitor after the action of combined magnetic fields.  相似文献   

14.
LIPID PEROXIDE FORMATION IN RAT BRAIN   总被引:4,自引:3,他引:1  
Abstract— Lipid peroxide formation as measured by the thiobarbituric acid reaction was demonstrated in subcellular fractions of rat brain. The ascorbic acid induced nonenzymic lipid peroxidation was distributed in all the subcellular fractions with a maximum in microsomes. The NADPH dependent enzymic lipid peroxidation occurred mainly in microsomes and to a smaller extent in synaptosomes; NADH could replace NADPH for the enzymic lipid peroxidation under the assay conditions employed. Fe2+ but not Fe3+ stimulated the NADPH or NADH dependent lipid peroxide formation. The optimum conditions with respect to pH, ascorbic acid or NADPH concentration, time of incubation and protein concentration were studied. Heating the microsomes at 100oCdid not influence the ascorbate-induced lipid peroxidation but completely abolished the NADPH linked peroxidation. Several heavy metal ions, surface active agents and EDTA were inhibitory to lipid peroxidation. The effect of thiol agents indicated that -SH groups were involved in the enzymic lipid peroxidation. Studies on subcellular fractions of developing rat brain showed an increasing trend in lipid peroxidation with the advancing age of the animal. No significant difference in lipid peroxidation was observed between brains from normal rats and those from rats affected by experimental allergic encephalomyelitis.  相似文献   

15.
The effect of some xenobiotics on microsomal mixed function oxidase and lipid peroxidation, in mice, in incubation mixtures for the in vitro mutagenesis test with metabolic activation was studied. Aniline 1 or 2 mM and aminopyrine 0.38 or 8.33 mM completely inhibited the lipid peroxidation with small protection of the monooxygenase. Styrene 50 or 100 mM inhibited to a lesser extent the lipid peroxidation with marked increase in the inactivation of the monooxygenase. By a technique based on successive additions of fresh microsomes it was possible to evaluate the part of the inactivation due to enzyme denaturation and that due to inhibition. EDTA 40 mM was not able to protect from inactivation in the presence of aniline 1mM. Data of this type could be utilized to obtain more reliable results of in vitro mutagenesis tests with metabolic activation by suitably managing the enzyme activity in the incubation mixtures in order to keep it as constant as possible.  相似文献   

16.
The effect of gamma-irradiation (under 0-10(3) Gy) on the intensity of lipid peroxidation, the microviscosity of annular and free lipids and the polarization of membrane proteins tryptophan fluorescence was studied in the outer and inner mitochondrial membranes. Some specific individual peculiarities of the mitochondrial membranes post-radiation changes were established.  相似文献   

17.
1. A study was made of the effect of hypolipidemic drug clofibrate on the level of lipid peroxidation in homogenates and subcellular fractions of rat liver. The intensity of lipid peroxidation was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of clofibrate the levels of Fe/ADP-ascorbate-, as well as t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation were decreased in the whole and "post-nuclear" liver homogenates. Dilution of the homogenates prevented depressing effect of clofibrate on lipid peroxidation. 3. Clofibrate significantly decreased the level of the Bu'OOH-dependent lipid peroxidation, but did not affect the activity of the Fe/ADP-ascorbate-induced reaction in rat liver mitochondria and microsomes. 4. Peroxidative alteration of membrane lipids in vivo was evaluated by determining the extent of conjugated dienes formation (absorption at 233 nm). It was shown that clofibrate did not increase the level of ultraviolet absorption of lipids from rat liver subcellular fractions. 5. The data obtained indicate that cytosol from the clofibrate treated rat liver contains a factor(s) which prevents lipid peroxidation in the mitochondria and microsomes.  相似文献   

18.
B S Fomenko 《Radiobiologiia》1983,23(5):607-611
It was shown that under the effect of Fe2+-initiated lipid peroxidation and ionizing radiation tryptophan fluorescence parameters (i.e. intensity and polarization) were subjected to similar changes. Shortly (15 min) after irradiation no changes were observed in the level of products reacting with thiobarbituric acid. It is concluded that the process and products of lipid peroxidation do not markedly contribute to the postirradiation alteration of tryptophan fluorescence. At the same time additional postirradiation damages to proteins can be attributed to activation of lipid peroxidation.  相似文献   

19.
The effect of acute hypoxia on the intensity of free radical processes in the basal nuclei (the nucleus caudatus, globus pallidus. nucleus accumbens. amygdaloid complex) of the brain, and the rat behaviour in the open field test has been studied under conditions of altered photoperiod. It has been shown that constant darkness levels the effect of acute hypoxia on the intensity of lipid peroxidation, preserves the activity of superoxide dismutase and catalase at a higher level, lowers the activity of glutathione peroxidase. Under light, the sensitivity of basal nuclei neurons to acute hypoxia is enhanced, the latter being reflected in intensification of lipid peroxidation at the expense of increased formation of dien conjugates. The activity of catalase at that considerably exceeds the level of even intact rats in all the structures. It has been established that an altered photoperiod modulates the effect of acute hypoxia on the parameters of rat's activity in the open field, the character of their change depending on the nature of a photophase change.  相似文献   

20.
Lipid peroxidation, glutathione level and activity of glutathione-S-transferase were studied in liver and brain of rats 4 and 3 h after a single i.p. administration of 0, 25, 75, 100 mg/kg acrylamide or 0, 50, 100, 200, 600 mg/kg styrene, respectively. In liver both acrylamide and styrene caused an increase in lipid peroxidation and decrease in glutathione contents and activity of glutathione-S-transferase in a dose dependent manner, while in brain only acrylamide produced a decrease in glutathione content. The decrease in glutathione content was not always associated with increase of lipid peroxidation. The enhancement of lipid peroxidation occurred only when glutathione contents were depleted to certain critical levels. No effect of acrylamide or styrene was seen on lipid peroxidation under in vitro conditions. The addition of glutathione in the incubation mixture significantly inhibited the rate of lipid peroxidation of liver homogenates of acrylamide and styrene treated animals.The results suggest that enhancement of lipid peroxidation in liver on exposure to acrylamide or styrene is a consequence of depletion of glutathione to certain critical levels. The inhibition of glutathione-S-transferase activity by acrylamide and styrene suggests that detoxication of these neurotoxic compounds could be suppressed following acute exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号