首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanine nucleotide exchange factors for Rho-GTPases (Rho-GEFs) invariably share a catalytic Dbl-Homology (DH) domain associated with a Pleckstrin Homology (PH) domain, whose function in Rho-GEF activation is not well understood. Trio is the first member of an emerging family of Dbl proteins containing two Rho-GEF domains (GEFD1 and GEFD2). TrioGEFD1 activates the GTPases RhoG and Rac1, while TrioGEFD2 acts on RhoA. In this study, we have investigated the roles of the two PH domains of Trio in Rho-GEF activity. We show that TrioPH1 is required for GEFD1-mediated induction of actin cytoskeleton remodeling and JNK activation. TrioPH1 is involved both in the catalytic activity and in the subcellular localization of its associated DH domain, by acting as a cytoskeletal targeting signal. Moreover, TrioPH1 in association with DH2 activates the JNK pathway, by an unknown mechanism independent of DH2 catalytic activity. TrioPH2 does not behave as a targeting module in intact cells. TrioPH2 inhibits DH2-dependent stress fiber formation, which correlates with the TrioPH2-mediated inhibition of DH2 GEF activity. In addition, expression in the neuron-like PC12 cell line of the intact Trio protein deleted of each PH domain shows that only TrioPH1 is required for Trio-induced neurite outgrowth. Taken together, these data demonstrate that the two PH domains play a different role in the control of Trio Rho-GEF function.  相似文献   

2.
3.
Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by accelerating their GDP/GTP exchange. Trio and its paralog Kalirin (Kalrn) are unique members of the Rho-GEFs that harbor three catalytic domains: two functional GEF domains and a serine/threonine kinase domain. The N-terminal GEF domain activates Rac1 and RhoG GTPases, while the C-terminal GEF domain acts specifically on RhoA. Trio and Kalrn have an evolutionary conserved function in morphogenetic processes including neuronal development. De novo mutations in TRIO have lately been identified in patients with intellectual disability, suggesting that this protein family plays an important role in development and disease.Phylogenetic and domain analysis revealed that a Kalrn/Trio ancestor originated in Prebilateria and duplicated in Urbilateria to yield Kalrn and Trio. Only few taxa outside the vertebrates retained both of these highly conserved proteins. To obtain first insights into their redundant or distinct functions in a vertebrate model system, we show for the first time a detailed comparative analysis of trio and kalrn expression in Xenopus laevis development. The mRNAs are maternally transcribed and expression increases starting with neurula stages. Trio and kalrn are detected in mesoderm/somites and different neuronal populations in the neural plate/tube and later also in the brain. However, only trio is expressed in migrating neural crest cells, while kalrn expression is detected in the cranial nerves, suggesting distinct functions. Thus, our expression analysis provides a good basis for further functional studies.  相似文献   

4.
Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, activating the Rac pathway via RhoG, and GEFD2, acting on RhoA, and contains numerous signaling motifs whose contribution to Trio function has not yet been investigated. Genetic analyses in Drosophila and in Caenorhabditis elegans indicate that Trio is involved in axon guidance and cell motility via a GEFD1-dependent process, suggesting that the activity of its Rho-GEFs is strictly regulated. Here, we show that human Trio induces neurite outgrowth in PC12 cells in a GEFD1-dependent manner. Interestingly, the spectrin repeats and the SH3-1 domain of Trio are essential for GEFD1-mediated neurite outgrowth, revealing an unexpected role for these motifs in Trio function. Moreover, we demonstrate that Trio-induced neurite outgrowth is mediated by the GEFD1-dependent activation of RhoG, previously shown to be part of the NGF (nerve growth factor) pathway. The expression of different Trio mutants interferes with NGF-induced neurite outgrowth, suggesting that Trio may be an upstream regulator of RhoG in this pathway. In addition, we show that Trio protein accumulates under NGF stimulation. Thus, Trio is the first identified Rho-GEF involved in the NGF-differentiation signaling.  相似文献   

5.
With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.  相似文献   

6.
Awasaki T  Saito M  Sone M  Suzuki E  Sakai R  Ito K  Hama C 《Neuron》2000,26(1):119-131
We identified the Drosophila trio gene, which encodes a Dbl family protein carrying two Dbl homology (DH) domains, each of which potentially activates Rho family GTPases. Trio was distributed along axons in the central nervous system (CNS) of embryos and was strongly expressed in subsets of brain regions, including the mushroom body (MB). Loss-of-function trio mutations resulted in the misdirection or stall of axons in embryos and also caused malformation of the MB. The MB phenotypes were attributed to alteration in the intrinsic nature of neurites, as revealed by clonal analyses. Thus, Trio is essential in order for neurites to faithfully extend on the correct pathways. In addition, the localization of Trio in the adult brain suggests its postdevelopmental role in neurite terminals.  相似文献   

7.
As a critical guanine nucleotide exchange factor (GEF) regulating neurite outgrowth, Trio coordinates multiple processes of cytoskeletal dynamics through activating Rac1, Cdc42 and RhoA small GTPases by two GEF domains, but the in vivo roles of these GEF domains and corresponding downstream effectors have not been determined yet. We established multiple lines of knockout mice and assessed the respective roles of Trio GEF domains and Rac1 in axon outgrowth. Knockout of total Trio in cerebellar granule neurons (CGNs) led to an impaired F-actin rearrangement of growth cone and hence a retarded neurite outgrowth. Such a retardation was reproduced by inhibition of GEF1 domain or knockdown of Cdc42 and restored apparently by introduction of active Cdc42. As Rac1 deficiency did not affect the neurite outgrowth of CGNs, we suggested that Trio GEF1-mediated Cdc42 activation was required for neurite outgrowth. We established a GEF2-knockout line with deletion of all Trio isoforms except a cerebella-specific Trio8, a short isoform of Trio without GEF2 domain, and used this line as a GEF2-deficient animal model. The GEF2-deficient CGNs had a normal neurite outgrowth but abolished Netrin-1-promoted growth, without affecting Netrin-1 induced Rac1 activation. We thus suggested that Trio GEF1-mediated Cdc42 activation rather than Rac1 activation drives the F-actin dynamics necessary for neurite outgrowth, while GEF2 functions in Netrin-1-promoted neurite elongation. Our results delineated the distinct roles of Trio GEF domains in neurite outgrowth, which is instructive to understand the pathogenesis of clinical Trio-related neurodevelopmental disorders.  相似文献   

8.
The Abelson tyrosine kinase (Abl) is integrated into signal transduction networks regulating axon outgrowth. We have identified the Drosophila trio gene through a mutation that exacerbates the Abl mutant phenotype. Drosophila Trio is an ortholog of mammalian Trio, a protein that contains multiple spectrin-like repeats and two Dbl homology (DH) domains that affect actin cytoskeletal dynamics via the small GTPases Rho and Rac. Phenotypic analysis demonstrates that trio and Abl cooperate in regulating axon outgrowth in the embryonic central nervous system (CNS). Dosage-sensitive interactions between trio and Abl, failed axon connections (fax), and enabled (ena) indicate that Trio is integrated into common signaling networks with these gene products. These observations suggest a mechanism by which Abl-mediated signaling networks influence the actin cytoskeleton in neuronal growth cones.  相似文献   

9.
The activation of Rho GTPases is mediated by guanine-nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP. Rho-GEFs are a very diverse family, with >70 members in humans. Bioinformatics analysis of the human Rho-GEFs shows that approximately 40% contain a putative PDZ-binding motif at the C-terminus. PDZ domains are protein-protein interaction domains that act as scaffolds to concentrate signaling molecules at specialized regions in the cell. We propose that the interaction between Rho-GEFs and PDZ-domain proteins is a general mechanism that controls Rho-GEF targeting and activation, helping to restrict and concentrate the exchange activity to appropriate subcellular destinations. Here, we summarize recent data that highlight the importance of these interactions in Rho-GEF regulation.  相似文献   

10.
11.
Rho GTPases control actin reorganization and many other cellular functions. Guanine nucleotide-exchange factors (GEFs) activate Rho GTPases by promoting their exchange of GDP for GTP. Trio is a unique Rho GEF, because it has separate GEF domains, GEFD1 and GEFD2, that control the GTPases RhoG/Rac1 and RhoA, respectively. Dbl-homology (DH) domains that are common to GEFs catalyse nucleotide exchange, and pleckstrin-homology (PH) domains localize Rho GEFs near their downstream targets. Here we show that Trio GEFD1 interacts through its PH domain with the actin-filament-crosslinking protein filamin, and localizes with endogenous filamin in HeLa cells. Trio GEFD1 induces actin-based ruffling in filamin-expressing, but not filamin-deficient, cells and in cells transfected with a filamin construct that lacks the Trio-binding domain. In addition, Trio GEFD1 exchange activity is not affected by filamin binding. Our results indicate that filamin, as a molecular target of Trio, may be a scaffold for the spatial organization of Rho-GTPase-mediated signalling pathways.  相似文献   

12.
Small Rho-GTPases are enzymes that are bound to GDP or GTP, which determines their inactive or active state, respectively. The exchange of GDP for GTP is catalyzed by so-called Rho-guanine nucleotide exchange factors (GEFs). Rho-GEFs are characterized by a Dbl-homology (DH) and adjacent Pleckstrin-homology (PH) domain that serves as enzymatic unit for the GDP/GTP exchange. Rho-GEFs show different GTPase specificities, meaning that a particular GEF can activate either multiple GTPases or only one specific GTPase. We recently reported that the Rho-GEF Trio, known to be able to exchange GTP on Rac1, RhoG and RhoA, regulates lamellipodia formation to mediate cell spreading and migration in a Rac1-dependent manner. In this commentary, we review the current knowledge of Trio in several aspects of cell biology.  相似文献   

13.
Small Rho-GTPases are enzymes that are bound to GDP or GTP, which determines their inactive or active state, respectively. The exchange of GDP for GTP is catalyzed by so-called Rho-guanine nucleotide exchange factors (GEFs). Rho-GEFs are characterized by a Dbl-homology (DH) and adjacent Pleckstrin-homology (PH) domain that serves as enzymatic unit for the GDP/GTP exchange. Rho-GEFs show different GTPase specificities, meaning that a particular GEF can activate either multiple GTPases or only one specific GTPase. We recently reported that the Rho-GEF Trio, known to be able to exchange GTP on Rac1, RhoG and RhoA, regulates lamellipodia formation to mediate cell spreading and migration in a Rac1-dependent manner. In this commentary, we review the current knowledge of Trio in several aspects of cell biology.  相似文献   

14.
The Rho-guanine nucleotide exchange factors (Rho-GEFs) remodel the actin cytoskeleton via their Rho-GTPase targets and affect numerous physiological processes such as transformation and cell motility. They are therefore attractive targets to design specific inhibitors that may have therapeutic applications. Trio contains two Rho-GEF domains, GEFD1 and GEFD2, which activate the Rac and RhoA pathways, respectively. Here we have used a genetic screen in yeast to select in vivo peptides coupled to thioredoxin, called aptamers, that could inhibit GEFD2 activity. One aptamer, TRIAPalpha (TRio Inhibitory APtamer), specifically blocks GEFD2-exchange activity on RhoA in vitro. The corresponding peptide sequence, TRIPalpha, inhibits TrioGEFD2-mediated activation of RhoA in intact cells and specifically reverts the neurite retraction phenotype induced by TrioGEFD2 in PC12 cells. Thus TRIPalpha is the first Rho-GEF inhibitor isolated so far, and represents an important step in the design of inhibitors for the expanding family of Rho-GEFs.  相似文献   

15.
Shivalkar M  Giniger E 《PloS one》2012,7(3):e33737
Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.  相似文献   

16.
Rho family GTPases are central regulators of neuronal morphology. Recently, Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been identified as new members of Rho family GTPases. Of these, Rnd2 is specifically expressed in neurons in brain; however, the signaling pathways of Rnd2 are not known. Here we have performed a yeast two-hybrid screen using Rnd2 as a bait and identified a novel Rnd2-effector protein, expressed predominantly in brain. We named it Rapostlin (apostle of Rnd2). Rapostlin has two functional domains, Fer-CIP4 homology (FCH) domain at the amino terminus and SH3 (Src homology 3) domain at the carboxyl terminus. In in vitro binding assays, Rapostlin specifically binds to Rnd2 among the Rho family GTPases in a GTP-dependent manner, and the Rnd2-binding domain of Rapostlin is localized between FCH and SH3 domains. Rapostlin directly binds to microtubules, and the amino-terminal region containing the FCH domain of Rapostlin is essential for this interaction. In PC12 cells, Rapostlin induces neurite branching in response to Rnd2, and at least the amino-terminal region of Rapostlin is necessary for this activity. Therefore, Rapostlin is the first effector of Rnd2, regulating neurite branch formation.  相似文献   

17.
The Trio guanine nucleotide exchange factor functions in neural development in Caenorhabditis elegans and Drosophila and in the development of neural tissues and skeletal muscle in mouse. The association of Trio with the Lar tyrosine phosphatase led us to study the role of tyrosine phosphorylation in Trio function using focal adhesion kinase (FAK). The Lar-interacting domain of Trio is constitutively tyrosine-phosphorylated when expressed in COS-7 cells and was highly phosphorylated when it was co-transfected with FAK. Co-precipitation studies indicated that Trio binds to the FAK amino-terminal domain and to the FAK kinase domain via its SH3 and kinase domains, respectively. Tyrosine-phosphorylated FAK and Trio were present mainly in the detergent-insoluble fraction of cell lysates, and co-expression of Trio and FAK resulted in increased amounts of Trio present in the detergent-insoluble fraction. Immunofluorescence of cells co-transfected with FAK and Trio revealed significant co-localization of the proteins at the cell periphery, indicating that they form a stable complex in vivo. A FAK phosphorylation site, tyrosine residue 2737, was identified in subdomain I of the Trio kinase domain. Additionally, in vitro phosphorylation assays and in vivo co-expression studies indicated that Trio enhances FAK kinase activity. These results suggest Trio may be involved in the regulation of focal adhesion dynamics in addition to effecting changes in the actin cytoskeleton through the activation of Rho family GTPases.  相似文献   

18.
Cytotoxic necrotizing factors CNF1 and CNF2 are produced by pathogenic Escherichia coli strains. They constitutively activate small GTPases of the Rho family by deamidation of a glutamine, which is crucial for GTP hydrolysis. Recently, a novel CNF (CNF(Y)) encompassing 65% identity to CNF1 has been identified in Yersinia pseudotuberculosis. In contrast to the E. coli toxins, which activate several isoforms of Rho family GTPases, CNF(Y) is a strong and selective activator of RhoA in vivo. By constructing chimeras between CNF1 and CNF(Y), we show that this substrate specificity is based on differences in the catalytic domains, whereas the receptor binding and translocation domains have no influence. We further define a loop element (L8) on the surface of the catalytic domains as important for substrate recognition. A single amino acid exchange in L8 is sufficient to shift substrate specificity of CNF1. Moreover, it is shown that RhoA activation by CNF1 is transient, which may be the consequence of the broader substrate specificity of the E. coli toxin, leading to cross-talk between the activated GTPases.  相似文献   

19.
Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio12841959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.  相似文献   

20.
Osteosarcoma (OS) is the most common primary bone tumor. Its high mortality rate and metastasis rate seriously threaten human health. Currently, the treatment has reached a plateau, hence we urgently need to explore new therapeutic directions. In this paper, we found that Trio was highly expressed in osteosarcoma than normal tissues and promoted the proliferation, migration, and invasion of osteosarcoma cells. Furthermore, Trio inhibited osteosarcoma cells’ osteogenic differentiation in vitro and accelerated the growth of osteosarcoma in vivo. Given Trio contains two GEF domains, which have been reported as the regulators of RhoGTPases, we further discovered that Trio could regulate osteosarcoma progression and osteogenic differentiation through activating RhoGTPases. In summary, all our preliminary results showed that Trio could be a potential target and prognostic marker of osteosarcoma.Subject terms: Bone cancer, Bone cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号