首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substantial evidence suggests that the fibrillation of alpha-synuclein is a critical step in the development of Parkinson's disease. In vitro, alpha-synuclein forms fibrils with morphologies and a staining characteristic similar to those extracted from disease-affected brain. Monomeric alpha-synuclein is an intrinsically disordered protein, with three Tyr residues in the C-terminal region, one in the N-terminus, and lacking Trp. It is thought that interactions between the C-terminus and the central portion of the molecule may prevent or minimize aggregation/fibrillation. To test this hypothesis we examined the importance of the Tyr residues on the propensity for alpha-synuclein to fibrillate in vitro. Fibril formation of alpha-synuclein was completely inhibited, in the timescale over which measurements were made, by replacing the three C-terminal Tyr residues with Ala. In addition, substitution of Tyr133 by Ala also resulted in the absence of fibrillation, whereas the individual Y125A and Y136A mutants showed limited inhibition. Replacement of Tyr39 by Ala also resulted in substantial inhibition of fibrillation. Structural analysis showed that the Y133A mutant had a substantially different conformation, rich in alpha-helical secondary structure, as compared with the wild-type and other mutants, although the formation of any tertiary structure has not been observed as can be judged from near-UV-CD spectra. These observations suggest that the long-range intramolecular interactions between the N- and C-termini of alpha-synuclein are likely to be crucial to the fibrillation process.  相似文献   

2.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies. Recently, two point mutations in alpha-synuclein were found to be associated with familial PD, but as of yet no mutations have been described in the homologous genes beta- and gamma-synuclein. alpha-Synuclein forms the major fibrillar component of Lewy bodies, but these do not stain for beta- or gamma-synuclein. This result is very surprising, given the extent of sequence conservation and the high similarity in expression and subcellular localization, in particular between alpha- and beta-synuclein. Here we compare in vitro fibrillogenesis of all three purified synucleins. We show that fresh solutions of alpha-, beta-, and gamma- synuclein show the same natively unfolded structure. While over time alpha-synuclein forms the previously described fibrils, no fibrils could be detected for beta- and gamma-synuclein under the same conditions. Most importantly, beta- and gamma-synuclein could not be cross-seeded with alpha-synuclein fibrils. However, under conditions that drastically accelerate aggregation, gamma-synuclein can form fibrils with a lag phase roughly three times longer than alpha-synuclein. These results indicate that beta- and gamma-synuclein are intrinsically less fibrillogenic than alpha-synuclein and cannot form mixed fibrils with alpha-synuclein, which may explain why they do not appear in the pathological hallmarks of PD, although they are closely related to alpha-synuclein and are also abundant in brain.  相似文献   

3.
Parkinson's disease is characterized by the progressive and selective loss of the dopaminergic neurons in the substantia nigra and the presence of ubiquitinated protein inclusions termed Lewy bodies. In the past six years, four genes involved in rare inherited forms of Parkinson's disease have been identified: mutations in the alpha-synuclein and ubiquitin carboxyterminal hydrolase L1 genes (UCH-L1) cause autosomal dominant forms, whereas mutations in the Parkin and DJ-1 genes are responsible for autosomal recessive forms of the disease. A toxic gain of function related to the ability of alpha-synuclein to assemble into insoluble amyloid fibrils may underlie neuronal cell death in parkinsonism due to alpha-synuclein gene mutations. In contrast, loss of protein function appears to be the cause of the disease in parkinsonism due to mutations in the genes encoding Parkin and UCH-L1, which are key enzymes of the ubiquitin-proteasome pathway. The presence of alpha-synuclein, Parkin and UCH-L1 in Lewy bodies suggests that dysfunction of pathways involved in protein folding and degradation is not only involved in the pathogenesis of familial Parkinson's disease, but could also play a role in the frequent sporadic form of the disease (idiopathic Parkinson's disease).  相似文献   

4.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major components of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD. alpha-Synuclein fibrils similar to the Lewy body filaments can be formed in vitro, and we have shown recently that both PD-linked mutations accelerate their formation. This study addresses the mechanism of alpha-synuclein aggregation: we show that (i) it is a nucleation-dependent process that can be seeded by aggregated alpha-synuclein functioning as nuclei, (ii) this fibril growth follows first-order kinetics with respect to alpha-synuclein concentration, and (iii) mutant alpha-synuclein can seed the aggregation of wild type alpha-synuclein, which leads us to predict that the Lewy bodies of familial PD patients with alpha-synuclein mutations will contain both, the mutant and the wild type protein. Finally (iv), we show that wild type and mutant forms of alpha-synuclein do not differ in their critical concentrations. These results suggest that differences in aggregation kinetics of alpha-synucleins cannot be explained by differences in solubility but are due to different nucleation rates. Consequently, alpha-synuclein nucleation may be the rate-limiting step for the formation of Lewy body alpha-synuclein fibrils in Parkinson's disease.  相似文献   

5.
alpha-Synuclein is an abundant highly charged protein that is normally predominantly localized around synaptic vesicles in presynaptic terminals. Although the function of this protein is still ill-defined, genetic studies have demonstrated that point mutations or genetic alteration (duplications or triplications) that increase the number of copies of the alpha-synuclein (SCNA) gene can cause Parkinson's disease or the related disorder dementia with Lewy bodies. alpha-Synuclein can aberrantly polymerize into fibrils with typical amyloid properties, and these fibrils are the major component of many types of pathological inclusions, including Lewy bodies, which are associated with neurodegenerative diseases, such as Parkinson's disease. Although there is substantial evidence supporting the toxic nature of alpha-synuclein inclusions, other modes of toxicity such as oligomers have been proposed. In this review, some of the evidence for the different mechanisms of alpha-synuclein toxicity is presented and discussed.  相似文献   

6.
Conway KA  Harper JD  Lansbury PT 《Biochemistry》2000,39(10):2552-2563
Two missense mutations in the gene encoding alpha-synuclein have been linked to rare, early-onset forms of Parkinson's disease (PD). These forms of PD, as well as the common idiopathic form, are characterized by the presence of cytoplasmic neuronal deposits, called Lewy bodies, in the affected region of the brain. Lewy bodies contain alpha-synuclein in a form that resembles fibrillar Abeta derived from Alzheimer's disease (AD) amyloid plaques. One of the mutant forms of alpha-synuclein (A53T) fibrillizes more rapidly in vitro than does the wild-type protein, suggesting that a correlation may exist between the rate of in vitro fibrillization and/or oligomerization and the progression of PD, analogous to the relationship between Abeta fibrillization in vitro and familial AD. In this paper, fibrils generated in vitro from alpha-synuclein, wild-type and both mutant forms, are shown to possess very similar features that are characteristic of amyloid fibrils, including a wound and predominantly unbranched morphology (demonstrated by atomic force and electron microscopies), distinctive dye-binding properties (Congo red and thioflavin T), and antiparallel beta-sheet structure (Fourier transform infrared spectroscopy and circular dichroism spectroscopy). alpha-Synuclein fibrils are relatively resistant to proteolysis, a property shared by fibrillar Abeta and the disease-associated fibrillar form of the prion protein. These data suggest that PD, like AD, is a brain amyloid disease that, unlike AD, is characterized by cytoplasmic amyloid (Lewy bodies). In addition to amyloid fibrils, a small oligomeric form of alpha-synuclein, which may be analogous to the Abeta protofibril, was observed prior to the appearance of fibrils. This species or a related one, rather than the fibril itself, may be responsible for neuronal death.  相似文献   

7.
The aggregation of alpha-synuclein is believed to be a critical step in the etiology of Parkinson's disease. A variety of biophysical techniques were used to investigate the aggregation and fibrillation of alpha-synuclein in which one of the four intrinsic Tyr residues was replaced by Trp, and two others by Phe, in order to permit fluorescence resonance energy transfer (FRET) between residues 39 (Tyr) and 125 (Trp). The mutant Y125W/Y133F/Y136F alpha-synuclein (one Tyr, one Trp) showed fibrillation kinetics similar to that of the wild-type, as did the Y125F/Y133F/Y136F (one Tyr, no Trp) and Y39F/Y125W/Y133F/Y136F (no Tyr, one Trp) mutants. Time-dependent changes in FRET, Fourier transform infrared, Trp fluorescence, dynamic light-scattering and other probes, indicate the existence of a transient oligomer, whose population reaches a maximum at the end of the lag time. This oligomer, in which the alpha-synuclein is in a partially folded conformation, is subsequently converted into fibrils, and has physical properties that are distinct from those of the monomer and fibrils. In addition, another population of soluble oligomers was observed to coexist with fibrils at completion of the reaction. The average distance between Tyr39 and Trp125 decreases from 24.9A in the monomer to 21.9A in the early oligomer and 18.8A in the late oligomer. Trp125 remains solvent-exposed in both the oligomers and fibrils, indicating that the C-terminal domain is not part of the fibril core. No FRET was observed in the fibrils, due to quenching of Tyr39 fluorescence in the fibril core. Thus, aggregation of alpha-synuclein involves multiple oligomeric intermediates and competing pathways.  相似文献   

8.
Cohlberg JA  Li J  Uversky VN  Fink AL 《Biochemistry》2002,41(5):1502-1511
Parkinson's disease is the second most common neurodegenerative disease and results from loss of dopaminergic neurons in the substantia nigra. The aggregation and fibrillation of alpha-synuclein have been implicated as a causative factor in the disease. Glycosaminoglycans (GAGs) are routinely found associated with amyloid deposits in most amyloidosis diseases, and there is evidence to support an active role of GAGs in amyloid fibril formation in some cases. In contrast to the extracellular amyloid deposits, the alpha-synuclein deposits in Lewy body diseases are intracellular, and thus it is less clear whether GAGs may be involved. To determine whether the presence of GAGs does affect the fibrillation of alpha-synuclein, the kinetics of fibril formation were investigated in the presence of a number of GAGs and other charged polymers. Certain GAGs (heparin, heparan sulfate) and other highly sulfated polymers (dextran sulfate) were found to significantly stimulate the formation of alpha-synuclein fibrils. Interestingly, the interaction of GAGs with alpha-synuclein is quite specific, since some GAGs, e.g., keratan sulfate, had negligible effect. Heparin not only increased the rate of fibrillation but also apparently increased the yield of fibrils. The molar ratio of heparin to alpha-synuclein and the incorporation of fluorescein-labeled heparin into the fibrils demonstrate that the heparin is integrated into the fibrils and is not just a catalyst for fibrillation. The apparent dissociation constant for heparin in stimulating alpha-synuclein fibrillation was 0.19 microM, indicating a strong affinity. Similar effects of heparin were observed with the A53T and A30P mutants of alpha-synuclein. Since there is some evidence that Lewy bodies may contain GAGs, these observations may be very relevant in the context of the etiology of Parkinson's disease.  相似文献   

9.
Synucleinsare small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.  相似文献   

10.
Ding TT  Lee SJ  Rochet JC  Lansbury PT 《Biochemistry》2002,41(32):10209-10217
The Parkinson's disease substantia nigra is characterized by the loss of dopaminergic neurons and the presence of cytoplasmic fibrillar Lewy bodies in surviving neurons. The major fibrillar protein of Lewy bodies is alpha-synuclein. Two point mutations in the alpha-synuclein gene are associated with autosomal-dominant Parkinson's disease (FPD). Studies of the in vitro fibrillization behavior of the mutant proteins suggest that fibril precursors, or alpha-synuclein protofibrils, rather than the fibrils, may be pathogenic. Atomic force microscopy (AFM) revealed two distinct forms of protofibrillar alpha-synuclein: rapidly formed spherical protofibrils and annular protofibrils, which were produced on prolonged incubation of spheres. The spherical protofibrils bound to brain-derived membrane fractions much more tightly than did monomeric or fibrillar alpha-synuclein, and membrane-associated annular protofibrils were observed. The structural features of alpha-synuclein annular protofibrils are reminiscent of bacterial pore-forming toxins and are consistent with their porelike activity in vitro. Thus, abnormal membrane permeabilization may be a pathogenic mechanism in PD.  相似文献   

11.
The aggregation of normally soluble alpha-synuclein in the dopaminergic neurons of the substantia nigra is a crucial step in the pathogenesis of Parkinson's disease. Oxidative stress is believed to be a contributing factor in this disorder. We have previously established that oxidation of all four methionine residues in alpha-synuclein (to the sulfoxide, MetO) inhibits fibrillation of this protein in vitro and that the MetO protein also inhibits fibrillation of unmodified alpha-synuclein. Here we show that the degree of inhibition of fibrillation by MetO alpha-synuclein is proportional to the number of oxidized methionines. This was accomplished be selectively converting Met residues into Leu, prior to Met oxidation. The results showed that with one oxidized Met the kinetics of fibrillation were comparable to those for the control (nonoxidized), and with increasing numbers of methionine sulfoxides the kinetics of fibrillation became progressively slower. Electron microscope images showed that the fibril morphology was similar for all species examined, although fewer fibrils were observed with the oxidized forms. The presence of zinc was shown to overcome the Met oxidation-induced inhibition. Interestingly, substitution of Met by Leu led to increased propensity for aggregation (soluble oligomers) but slower formation of fibrils.  相似文献   

12.
Fibrillar deposits of alpha-synuclein occur in several neurodegenerative diseases. Two mutant forms of alpha-synuclein have been associated with early-onset Parkinson's disease, and a fragment has been identified as the non-amyloid-beta peptide component of Alzheimer's disease amyloid (NAC). Upon aging, solutions of alpha-synuclein and NAC change conformation to beta-sheet, detectable by CD spectroscopy, and form oligomers that deposit as amyloid-like fibrils, detectable by electron microscopy. These aged peptides are also neurotoxic. Experiments on fragments of NAC have enabled the region of NAC responsible for its aggregation and toxicity to be identified. NAC(8-18) is the smallest fragment that aggregates, as indicated by the concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. Fragments NAC(8-18) and NAC(8-16) are toxic, whereas NAC(12-18), NAC(9-16) and NAC(8-15) are not. Hence residues 8-16 of NAC comprise the region crucial for toxicity. Toxicity induced by alpha-synuclein, NAC and NAC(1-18) oligomers occurs via an apoptotic mechanism, possibly initiated by oxidative damage, since these peptides liberate hydroxyl radicals in the presence of iron. Molecules with anti-aggregational and/or antioxidant properties may therefore be potential therapeutic agents.  相似文献   

13.
Abnormal folding and accumulation of alpha-synuclein is implicated in several neurological disorders including Parkinson's disease. Although alpha-synuclein is a typical cytoplasmic protein, a small amount of both monomeric and aggregated forms is secreted from cells and is present in human body fluids, such as cerebrospinal fluid. Extracellular alpha-synuclein aggregates have been shown to be neurotoxic, posing a challenge to any cell exposed to them. Here, we examine the internalization of various forms of extracellular alpha-synuclein, including fibrils, oligomers, and monomer, into neuronal cells and their subsequent degradation. Internalization of fibrillar alpha-synuclein could be inhibited by low temperature or the expression of a dominant-negative mutant dynamin-1 K44A, suggesting the endocytosis-mediated internalization. The internalized fibrils moved through the endosomal pathway and were degraded in the lysosome, which ultimately resulted in the clearance of the alpha-synuclein aggregates from the culture medium. Non-fibrillar oligomeric aggregates were also internalized via endocytosis and degraded by the lysosome. In contrast to aggregate uptake, the internalization of monomeric alpha-synuclein was unaffected by cold temperature and the expression of dynamin-1 K44A, consistent with direct translocation across the plasma membrane. Internalized monomers rapidly pass the plasma membrane, escaping the cells before being degraded by the cellular proteolytic systems. These results suggest that only aggregated forms of extracellular alpha-synuclein can be cleared by cell-mediated uptake and degradation, and this might represent a mechanism of preventing neurons from exposure to potentially toxic alpha-synuclein.  相似文献   

14.
Human α-synuclein is a presynaptic terminal protein and can form insoluble fibrils that are believed to play an important role in the pathogenesis of several neurodegenerative diseases such as Parkinson‘s disease, dementia with Lewy bodies and Lewy body variant of Alzheimer‘s disease. In this paper, in situ atomic force microscopy has been used to study the structural properties of α-synuclein fibrils in solution using two different atomic force microscopy imaging modes: tapping mode and contact mode. In the in situ contact mode atomic force microscopy experiments α-synuclein fibrils quickly broke into fragments, and a similar phenomenon was found using tapping mode atomic force microscopy in which α-synuclein fibrils were incubated with guanidine hydrochloride (0.6 M). The α-synuclein fibrils kept their original filamentous topography for over 1h in the in situ tapping mode atomic force microscopy experiments. The present results provide indirect evidence on how 13-sheets assemble into α-synuclein fibrils on a nanometer scale.  相似文献   

15.
alpha-Synuclein has been implicated in the pathogenesis of many neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Although the function of alpha-synuclein remains largely unknown, recent studies have demonstrated that this protein can interact with phospholipids. To address the role of alpha-synuclein in neurodegenerative disease, we have investigated whether it binds phospholipase D (PLD) and affects PLD activity in human embryonic kidney (HEK)-293 cells overexpressing wild type alpha-synuclein or the mutant forms of alpha-synuclein (A53T, A30P) associated with Parkinson's disease. Tyrosine phosphorylation of alpha-synuclein appears to play a modulatory role in the inhibition of PLD, because mutation of Tyr(125) to Phe slightly increases inhibitory effect of alpha-synuclein on PLD activity. Treatment with pervanadate or phorbol myristate acetate inhibits PLD more in HEK 293 cells overexpressing alpha-synuclein than in control cells. Binding of alpha-synuclein to PLD requires phox and pleckstrin homology domain of PLD and the amphipathic repeat region and non-Abeta component of alpha-synuclein. Although biologically important, co-transfection studies indicate that the interaction of alpha-synuclein with PLD does not influence the tendency of alpha-synuclein to form pathological inclusions. These results suggest that the association of alpha-synuclein with PLD, and modulation of PLD activity, is biologically important, but PLD does not appear to play an essential role in the pathophysiology of alpha-synuclein.  相似文献   

16.
Fibrillar alpha-synuclein is a component of the Lewy body, the characteristic neuronal inclusion of the Parkinson's disease (PD) brain. Both alpha-synuclein mutations linked to autosomal dominant early-onset forms of PD promote the in vitro conversion of the natively unfolded protein into ordered prefibrillar oligomers, suggesting that these protofibrils, rather than the fibril itself, may induce cell death. We report here that protofibrils differ markedly from fibrils with respect to their interactions with synthetic membranes. Protofibrillar alpha-synuclein, in contrast to the monomeric and the fibrillar forms, binds synthetic vesicles very tightly via a beta-sheet-rich structure and transiently permeabilizes these vesicles. The destruction of vesicular membranes by protofibrillar alpha-synuclein was directly observed by atomic force microscopy. The possibility that the toxicity of alpha-synuclein fibrillization may derive from an oligomeric intermediate, rather than the fibril, has implications regarding the design of therapeutics for PD.  相似文献   

17.
Park JY  Lansbury PT 《Biochemistry》2003,42(13):3696-3700
Parkinson's disease (PD) is an age-associated and progressive movement disorder that is characterized by dopaminergic neuronal loss in the substantia nigra and, at autopsy, by fibrillar alpha-synuclein inclusions, or Lewy bodies. Despite the qualitative correlation between alpha-synuclein fibrils and disease, in vitro biophysical studies strongly suggest that prefibrillar alpha-synuclein oligomers, or protofibrils, are pathogenic. Consistent with this proposal, transgenic mice that express human alpha-synuclein develop a Parkinsonian movement disorder concurrent with nonfibrillar alpha-synuclein inclusions and the loss of dopaminergic terminii. Double-transgenic progeny of these mice that also express human beta-synuclein, a homologue of alpha-synuclein, show significant amelioration of all three phenotypes. We demonstrate here that beta- and gamma-synuclein (a third homologue that is expressed primarily in peripheral neurons) are natively unfolded in monomeric form, but structured in protofibrillar form. Beta-synuclein protofibrils do not bind to or permeabilize synthetic vesicles, unlike protofibrils comprising alpha-synuclein or gamma-synuclein. Significantly, beta-synuclein inhibits the generation of A53T alpha-synuclein protofibrils and fibrils. This finding provides a rationale for the phenotype of the double-transgenic mice and suggests a therapeutic strategy for PD.  相似文献   

18.
Recent studies have begun to investigate the role of agrin in brain and suggest that agrin's function likely extends beyond that of a synaptogenic protein. Particularly, it has been shown that agrin is associated with the pathological lesions of Alzheimer's disease (AD) and may contribute to the formation of beta-amyloid (Abeta) plaques in AD. We have extended the analysis of agrin's function in neurodegenerative diseases to investigate its role in Parkinson's disease (PD). Alpha-synuclein is a critical molecular determinant in familial and sporadic PD, with the formation of alpha-synuclein fibrils being enhanced by sulfated macromolecules. In the studies reported here, we show that agrin binds to alpha-synuclein in a heparan sulfate-dependent (HS-dependent) manner, induces conformational changes in this protein characterized by beta-sheet structure, and enhances insolubility of alpha-synuclein. We also show that agrin accelerates the formation of protofibrils by alpha-synuclein and decreases the half-time of fibril formation. The association of agrin with PD lesions was also explored in PD human brain, and these studies shown that agrin colocalizes with alpha-synuclein in neuronal Lewy bodies in the substantia nigra of PD brain. These studies indicate that agrin is capable of accelerating the formation of insoluble protein fibrils in a second common neurodegenerative disease. These findings may indicate shared molecular mechanisms leading to the pathophysiology in these two neurodegenerative disorders.  相似文献   

19.
Pyrroloquinoline quinone (PQQ) prevents fibril formation of alpha-synuclein   总被引:5,自引:0,他引:5  
Pyrroloquinoline quinone (PQQ) is a noncovalently bound cofactor in the bacterial oxidative metabolism of alcohols. PQQ also exists in plants and animals. Due to its inherent chemical feature, namely its free-radical scavenging properties, PQQ has been drawing attention from both the nutritional and the pharmacological viewpoint. alpha-Synuclein, a causative factor of Parkinson's disease (PD), has the propensity to oligomerize and form fibrils, and this tendency may play a crucial role in its toxicity. We show that PQQ prevents the amyloid fibril formation and aggregation of alpha-synuclein in vitro in a PQQ-concentration-dependent manner. Moreover, PQQ forms a conjugate with alpha-synuclein, and this PQQ-conjugated alpha-synuclein is also able to prevent alpha-synuclein amyloid fibril formation. This is the first study to demonstrate the characteristics of PQQ as an anti-amyloid fibril-forming reagent. Agents that prevent the formation of amyloid fibrils might allow a novel therapeutic approach to PD. Therefore, together with further pharmacological approaches, PQQ is a candidate for future anti-PD reagent compounds.  相似文献   

20.
Brown DR 《The FEBS journal》2007,274(15):3766-3774
alpha-synuclein is one of a family of proteins whose function remains unknown. This protein has become linked to a number of neurodegenerative disease although its potential causative role in these diseases remains mysterious. In diseases such as Parkinson's disease and Lewy body dementias, alpha-synuclein becomes deposited in aggregates termed Lewy bodies. Also, some inherited forms of Parkinson's diseases are linked to mutations in the gene for alpha-synuclein. Studies have mostly focussed on what causes the aggregation of the protein but, like many amyloidogenic proteins associated with a neurodegenerative disorder, this protein has now been suggested to bind copper. This finding is currently controversial. This review examines the evidence that alpha-synuclein is a copper binding protein and discusses whether this has any significance in determining the function of the protein or whether copper binding is at all necessary for aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号